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Origin of bursting through homoclinic spike adding in a neuron model
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The origin of spike adding in bursting activity is studied in a reduced model of the leech heart
interneuron. We show that as the activation kinetics of the slow potassium current is shifted towards
depolarized membrane potential values, the bursting phase accommodates incrementally more spikes
into the train. This phenomenon is attested to be caused by the homoclinic bifurcations of a saddle
periodic orbit setting the threshold between the tonic spiking and quiescent phases of the bursting.
The fundamentals of the mechanism are revealed through the analysis of a family of the onto

Poincaré return mappings.

PACS numbers: 02.40.Xx, 05.45.-a, 05.45.Ac, 05.45.Pq, 87.19.La

Bursting is a manifestation of complex, multiple time
scale dynamics observed in various fields of science as di-
verse as neuroscience, food chain echo-systems and non-
linear optics [1]. Period adding, called spike adding in the
context of neuronal bursting, is a generic term describing
nonlinear phenomena observed in also distinct applica-
tions, such as the van der Pol generator, bubble forma-
tion and piece-wise linear endomorphisms, although the
underlying mechanisms are quite dissimilar [2, 3]. Stud-
ies of the bursting require non-local bifurcation analysis,
which is based on the methods of Poincaré return map-
pings. The Poincaré mappings have been employed in-
tensively in computational neuroscience [4], despite that
a disadvantage of mostly used pointwise ones generated
from time series is their sparseness. In this Letter we
propose a new algorithm for constructing a full family of
onto mappings. Unlike a pointwise one, an onto map-
ping allows us to determine unstable solutions that are
the primary organizing centers of complex dynamics of a
system.

The spike adding cascade analyzed in this Letter acts
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FIG. 1: Incremental spike adding cascade develops as the
activation kinetics of the slow potassium current is shifted
towards more depolarized membrane potentials.

as follows: as the bifurcation parameter shifts the half-
inactivation potential towards more depolarized values,
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the number of spikes per burst grows incrementally with
no bound until bursting transforms into tonic spiking.
Earlier in [6-8] we discovered and analyzed two novel
mechanisms of transitions between tonic spiking and
bursting. Both describe the terminal phases of the spike
adding cascades. The mechanisms contrast by distinct
homoclinic bifurcations of a saddle-node periodic orbit.
So, the first one is due to the blue sky catastrophe [9],
where new spikes emerge in a middle part of a burst. The
second one is characterized by the bi-stability of the co-
existent tonic spiking and bursting attractors separated
by a threshold, which is the stable manifold of a saddle
periodic orbit. In this case, bursting gains new spikes at
its very beginning while approaching this threshold.

We study the spike adding cascade in the reduced oscil-
latory heart interneuron model [5-7]:

V= —2[30m&y(V +0.07) + 8 (V + 0.046)+
. 200 £3(—150, 0.0305, V)hxa (V — 0.045)], )
hya = 24.69 [f(500, 0.0333, V) — hyal,
thge = 4[f(—83,0.018 + VAR V) — my,],
where V is the membrane potential, hy, is in-

activation of the fast sodium current and mgs 1is
activation of persistent potassium one; a Boltz-
mann f(a,b, V) = 1/(1 4+ e*P*V)) describes kinetics of
(in)activation of the currents. The bifurcation param-
eter VEh‘ft is a deviation from V1 = 0.018V correspond-

ing to the half-activated potabblum channel at f = 1/2.
Dynamlcally, variations of VSh‘ft translate the slow null-
cline ko = 0 in the V- dlrectlon thereby altering the
activation of Ixs. In this study, VShIft varies within
[—0.026,0.0018]V; these upper and lovver values corre-
spond to the hyperpolarized quiescent state and tonic
spiking of the neuron, respectively. In between the model
exhibits multiple transformations of the bursting activ-
ity.

Due to the disparity of the time constants of the phase
variables, the fast-slow system paradigm is applicable to
system (1): its first two equations form a fast subsystem,
while the last equation is the slow one. The dynamics
of such a system are known [10] to be determined by
and centered around attracting pieces of the slow motion



manifolds that constitute a skeleton of activity patterns.
These manifolds are formed by the limit sets, such as
equilibria and limit cycles, of the fast subsystem where
the slow variable becomes a parameter in the singular
limit. A typical Hodgkin-Huxley model possesses a pair
of such manifolds [11]: quiescent and tonic spiking, de-
noted by Meq and M, correspondingly. A solution of
(1) that repeatedly switches between the low, hyperpo-
larized branch of M¢q and the spiking manifold M. rep-
resents a busting activity in the model. In this Letter
and our previous works [6-8] we reveal these manifolds
in the full model (1) by employing the parameter contin-
uation approach without the preceding slow-fast decom-
position. This is the novelty of our approach based on
the parameter dependence of solutions of the initial value
problem. Observe first that by construction, the equilib-
rium state of the full system is that of its fast subsystem.
In the phase space of (1) it is the intersection point of
the 1D quiescent manifold M, with the 2D slow null-
cline ks = 0, as shown in insets A;-C; in Fig. 2. The
position of the latter depends on Viift. Hence, as V3hift
is varied, the equilibrium state of (1) and therefore the
slow nullcline move (vertically) along thereby tracing the
desired manifold Me,. Note that the Vilift-parameter
continuation leaves My, intact. This approach is espe-
cially applicable to multiple time scales systems where a
similar continuation technique reveals the manifolds.

Whenever the spiking manifold M, is transient for the
solutions of (1), like ones winding around it in Figs. 2
and 4, the models exhibits bursting. Otherwise, (1)
has a spiking periodic orbit that has emerged on M.
through the saddle-node bifurcation thereby terminating
the bursting activity [6, 9] or both regimes may co-exist
as in [7, 8]. In our earlier works we developed the concept
of the averaged nullclines specifically to locate and study
local bifurcations of such spiking periodic orbits. Loosely
speaking, one shall exist if the slow nullcline my, = 0
cuts across the spiking manifold Mj.. Its position on
M. is determined by that of the average slow nullcline,
which in turn is determined by the bifurcation param-
eter Vihzi“. Therefore, in response to a change in the
value of V3lft the periodic orbit slides along the mani-
fold Mj.. The parameter continuation of periodic orbit
branches is a reliable numerical routine based on the col-
location method or the boundary value problem, which
are implemented in the software packages like Content
[12] used in this study. Thus, by following the orbit that
represents the tonic spiking we can trace down the whole
spiking manifold and determine both its attracting and
unstable segments. A partial segment of the manifold
corresponding to V5A! increasing from —0.026mV (left
end) through 0.0018V, where M, wraps around Meq, is
shown in Figs. 2 and 4. The number of complete revolu-
tions of the solution of (1) around M. is that of spikes
per burst. We use this winding number to classify the
bursting activity. The evolution of the bursting attrac-
tor corresponding to the waveforms in Fig.1 is shown in
the left column in Fig. 2. One can notice that its trans-
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FIG. 2: (color online) Phase portraits (left column) and

Poincaré mappings (right column) corresponding to the wave-
forms in Fig. 1(A-C) for Viif = —0.012V, —0.016V and
—0.021V, respectively. (A) Unique minimum on the spiking
orbit of (1) is the stable fixed point of the Poincaré mapping.
In By and C; this fixed point, now unstable (red dot), sets the
threshold between the quiescent and spiking sections of the
mapping graph. (B) Two V-minima of the bursting orbit cor-
respond to the period-2 attractor of the mapping. The two
points of the latter are separated by the threshold, so that
the left one represents the minimum at the quiescent phase
and the one to the right corresponds to the minimum separat-
ing two spikes in the burst trace. (C) Three V-minima of the
bursting orbit compose the period-3 attractor of the mapping,
consisting of one point corresponding to the quiescent phase
while two ones separating three spikes within the burst.

formations occur on the aforementioned spiking manifold
M.. To determine what makes the bursting attractor
change its shape and stability, we construct numerically
a Vi‘(hQift— parameter family of 1D Poincaré mappings tak-
ing an interval of membrane potentials onto itself. This
interval is comprised of the minimal values, denoted by
(Vo), of the membrane potential on the found periodic
orbits foliating densely the spiking manifold Mj.. Then,
for some VA in question, we integrate numerically the
outgoing solution of (1) starting from the initial condi-
tions corresponding to each (V) to find the consecutive
minimum (V1) in the voltage time series. All found pairs



I
I
[e]
I
[
>

[ ]
/
i

NN

-25 -20 ‘ -15 -10
VEIt (mv)

-50}

FIG. 3: (color online) Bifurcation diagram: stable and unsta-
ble orbits of the Poincaré mapping are shown in black/purple
and red, respectively. The middle (red) branch of the diagram
is the threshold between quiescent and spiking phases of the
bursting. The fold point corresponds to the saddle-node bi-
furcation of fixed points the Poincaré mapping. Parameter
values labeled (A)-(C) are used in Figs. 1-2. Lines with H’s
mark homoclinic bifurcations and spike adding transitions.

(Vo, V1) constitute the graph of the Poincaré mapping
for given Vslift - Such a mapping, shown in Fig. 2(Az) at
Vilift = —0.012V, corresponds to the trace in Fig. 1(A).
Its fixed point is a single V-minimum on the periodic
orbit in inset (Aj). The stability of the orbit follows
from the fact that the fixed point resides on the flat qui-
escent section of the mapping graph that is constituted
by the stable equilibria on the hyperpolarized branch of
Meq. Decreasing Vit below —0.0149V results in that
(1) generates bursts with two spikes (Fig. 1B). The map-
ping shows that the transition from tonic spiking into
bursting occurs through the flip-bifurcation giving raise
to a new period-2 bursting attractor. Further decreas-
ing V3Hift below —0.0200812V elevates the slow nullcline
mgo = 0 thereby slowing down the mgso-component of
the bursting orbit of (1) on Meq so that the neuron starts
to generate bursts with three spikes (Figs. 1-2(C)). In the
mapping, this is accompanied with that the quiescent sec-
tion of the mapping graph lifts up so that the iterate of
the bursting orbit, which follows its quiescent phase, is
brought up higher into the spiking section of the map-
ping with more depolarized potentials. This increases
the number of the points comprising the bursting orbit
of the mapping and, correspondingly, makes the solution
of (1) linger longer around the manifold M., and hence
generate more spikes within the burst.

The whole spike adding sequence is documented in the
bifurcation diagram in Fig. 3. It yields the evolution of
the bursting orbits of the mappings and therefore of the
V-minima of the bursting orbits of model (1) as Vit
is varied. In Fig. 3 the number of the intersections of

the vertical lines labeled by (A-C) yields the spike num-
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FIG. 4: (color online) Chaos in (1) and the mapping at

the transition from 4 to 5 intraspikes per bursts at Vit =

—0.02185302734375V. Shown in red are the saddle periodic
orbit and the primary homoclinics to the threshold fixed
point.

ber per burst for the parameter values corresponding
to Figs. 1 and 2. The diagram reveals alos that spike
adding transitions occur within narrow parameter win-
dows where the system shows chaotic (or long transient)
regimes (Fig. 4).

Chaos observed at a spike adding transition is due to the
emerging homoclinics to the repelling (threshold) fixed
point in the family of these noninvertible Poincaré map-
ping. Since its multiplier is negative, in the phase space
of model (1) the image of the point is a saddle periodic or-
bit with 2D stable and unstable manifolds homeomorphic
to a Mobious band [9]. A first boundary of the transi-
tion window corresponds to the occurrence of a primary
homoclinic orbit induced through the initial tangency of
these manifolds [13]. Inside the window, the tangles of
the manifolds crossing transversally produce countably
many Poincaré homoclinic and saddle periodic orbits. As
a result the system can generate burst trains with unpre-
dictably alternating spike numbers. Such a situation is
depicted in the transition window around the parameter
cut Hy where the neuron model exhibits bursts with two,
three and four spikes. Figure 5 gives the distribution
of the number of spikes per burst as the Vi is varied
within this window.

Detection of homoclinics of a saddle periodic orbit in
the phase space of a model is the state of the art. We use
the Poincaré mapping technique to find the homoclinic
orbits in the phase space of the interneuron model (1) and
the corresponding parameter values indeed by following
the forward iterates of the critical point on the graph of
the corresponding mapping. The homoclinic tangency
occurs when a finite sequence of the forward iterates of
the critical point terminates at the repelling fixed point.
Figure 4(D2) shows a homoclinic orbit and chaos caused
by it at the transition window between the robust bursts
with 4 to 5 spikes. Overall, we detected the first 17 such
primary homoclinic bifurcations, Fig. 6, which cause the
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FIG. 5: (color) Distribution of the number of spikes per burst
through the transition window around Vi = —0.02185V.

spike adding transitions. The transitions occur more of-
ten exponentially as V33t decreases towards —0.024828V
that corresponds to an arbitrarily long homoclinic orbit.
(Fig. 6).

In conclusion, we discuss the details of the forthcoming
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FIG. 6: Logarithmic fit of the sequence of the primary
homoclinic bifurcation values accumulating to V%hﬁft =

—0.024828V, plotted vs. the ordinal number.

termination of the bursting activity in the interneuron
model. The use of the mappings makes the interpreta-
tion of the scenario proposed in [7] particularly clear. The
diagram in Fig. 3 shows the fold point corresponding to
a saddle-node bifurcation at Vit = —0.0265V. To its
left, the mapping possesses a pair of new fixed points.
The stable one (its branch shown in purple) is the only
V-minimum of the spiking periodic orbit that co-exists
now with the bursting attractor. The basins of both at-
tractors are separated by the new unstable fixed point
(upper red branch). A further decrease of Vit ceases
the bistability, when basin of the bursting attractor col-
lides with the unstable point at V3t = —0.024828. The
bursting basin becomes fractal for lower values of the
parameter, and the bursting attractor endows with the
Cantor set structure. The real cause of this crisis is the
the occurrence of a primary homoclinics of the new fixed
point [13], that in turn establishes a heteroclinic connec-
tions between both unstable ones. After that the system
demonstrates transitive bursting for an indefinite while,
prior switching into the dominating tonic spiking regime.

Acknowledgement We thank the anonymous review-
ers for the helpful comments. This work was supported
by NIH grant NS-043098, GSU Brains and Behavior pro-
gram, and RFFI grant N° 050100558.

[1] G.S. Cymbalyuk, Q. Gaudry M.A. Masino, R.L. Cal-
abrese, J. Neuroscience 22 (2002); S. Rinaldi and S. Mu-
ratori, Ecol. Model. 61 287 (1992); D.J.DeShazer, J.
Garcia-Ojalvo, R.Roy, Phys. Rev. E 67, 036602 (2003).

[2] M. Levi, STAM J. Appl. Math. 5(4) 943 (1990); Y.L.

Maistrenko, V.L. Maistrenko, S.I. Vikul, Chaos, Solitons

and Fractals 9(1) 67 (1998); V.S. Piassi, A. Tufaile, J.C.

Sartorelli, Chaos 14(2), 477 (2004).

E. Mosekilde, B. Lading, S. Yanchuk, Yu. Maistrenko,

Biosystems, 63, 3 (2001); H. Gu, M. Yang, L. Li, Z. Liu,

W. Ren. Physics Letters A 319, 89 (2003); A.L. Shilnikov

and N.F. Rulkov, Bifuractions & Chaos 13(11) 3325

(2003).

[4] T.R. Chay, Physica D 16, 233 (1985). A.V. Holden,
Y.S. Fan, Chaos, Solitons & Fractals 2 221 (1992); B.
Deng, Mathematocal Biology 38 28 (1999); V. Belykh, 1.
Belykh, E. Mosekilde, M. Colding-Joergensen, Eur. Phys.
J. E, 3(3) 205 (2000); A.L. Shilnikov and N.F. Rulkov,
Phys. Let. A 328 177 (2004); G.S. Medvedev, Physica D
202 37 (2005).

[5] G.S. Cymbalyuk and R.L. Calabrese, Neurocomputing
38-40, 159 (2001).

3

[6] A. Shilnikov and G. Cymbalyuk, PRL 94, 048101 (2005).

[7] A. Shilnikov, R.L. Calabrese and G. Cymbalyuk, Phys
Review E 71(5) 056214 (2005); Neurocomputing 65-66,
869 (2005).

[8] G.S. Cymbalyuk A.L. Shilnikov, J. Comp. Neuroscience
18(3), 255 (2004); Regular & Chaotic Dynamics 9(3),
281 (2004).

[9] L.P Shilnikov, A.L. Shilnikov, D.V. Turaev and L.O.
Chua, Methods qualitative theory in nonlinear dynamics,
Vols. I-II. World Sci. Publ. (1998, 2001); A.L. Shilnikov,
L.P. Shilnikov and D.V. Turaev, Moscow Math J. 5(1),
205 (2005).

[10] A.N. Tikhonov, Mat. Sb. 31 575 (1952); N. Fenichel, J.
Diff. Eq. 31, 53 (1979).

[11] J. Rinzel, B. Ermentrout, Methods in Neuronal Mod-
elling: From synapses to Networks, eds. C. Koch and
I. Segev, MIT Press (1989).

[12] ftp://ftp.cwi.nl/pub/CONTENT.

[13] N.K. Gavrilov and L.P. Shilnikov, Math. USSR-Sb. 19,
139 (1973).



