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A comprehensive bifurcation analysis of a low-order atmospheric circulation model is carried
out. It is shown that the model admits a codimension-2 saddle-node-Hopf bifurcation. The

principal mechanisms leading to the appearance

of complex dynamics around this bifurcation

are described and various routes to chaotic behavior are identified, such as the transition through
the period doubling cascade, the breakdown of an invariant torus and homoclinic bifurcations
of a saddle-focus. Non-trivial limit sets in the form of a chaotic attractor or a chaotic repeller
are found in some parameter ranges. Their presence implies an enhanced unpredictability of
the system for parameter values corresponding to the winter season.

1. Introduction

Atmospheric physics provides some of the most
striking and convincing examples of complex dy-
namical behavior observed in natural sciences, from
oscillations and multistability to deterministic chaos
(Nicolis & Nicolis (1987]). Most of the real world
models of the atmosphere involve a large number
of variables and parameters. A great deal of effort
has therefore been devoted to the development of
truncated versions, with the hope that the study
of such low-order dynamical systems would allow
one to disentangle the principal mechanisms leading
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to the well-known unpredictability of weather and
climate (Saltzman [1978]). Most of the work carried
out in this area has been limited to numerical simu-
lations in which a particular set of parameter values
or a particular pathway in parameter space is cho-
sen at the outset, thereby leaving aside a great part
of the richness contained in the original equations.
Our purpose in the present paper is to undertake
a detailed qualitative analysis, supplemented with
numerical simulations, of a low-order general atmo-
spheric circulation model proposed by Lorenz, capa-
ble of unfolding the entire variety of characteristic
behaviors displayed by the system.
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The model equations are (Lorenz (1984, 1987)):

dX
5 =Y -2’ -aX +qF,

Y
%:XY—I;XZ—Y+G, (1)

@z =bXY+XZ-2Z.

dt
where variable X represents the strength of the glob-
ally averaged westerly current (identified through
the geostrophic relation with the cross-latitude tem-
perature difference) and Y, Z are the strength of
the cosine and sine phases of a chain of superposed
waves. The unit of the variable ¢ is equal to the
damping time of the waves, estimated to be five
days. The terms in F and G represent thermal forc-
ings: F stands for the cross-latitude heating con-
trast, whereas G accounts for the heating contrast
between oceans and continents. Finally, parameter
b stands for the strength of the advection of the
waves by the westerly current. Hereafter we shall
treat F, G as control parameters and set a = % and
b=4.

In Sec. 2 we carry out the linear stability analy-
sis of the fixed point solutions of Egs. (1) and iden-
tify a codimension-2 bifurcation point. The princi-
pallocal bifurcations around this point are analyzed
in Sec. 3. Homoclinic bifurcations are considered
and the existence of strange sets (attracting and
repelling) established in Sec. 4. Bifurcations of pe-
riodic orbits are considered in Sec. 5 and the main
conclusions are drawn in Sec. 6.

2. Fixed Points and Linear Stability

An efficient method for revealing the behavior of a
dynamical system is to determine the fixed points
(steady state solutions); carry out linear stability
analysis around them thus determining the points
in parameter space where local bifurcations can be
expected; explore the possibilities of global bifurca-
tions by identifying, through control of several pa-
rameters, high codimension bifurcation points; and

finally complete the picture obtained by this ana-

lytic investigation by computer simulations.
We first deal with the fixed points (zo, yo, 2o)
of Egs. (1),

0=—-y§-z§-axo+aF,
0 =zoyo — bzozo —yo + G, - (2)
0=b:coyo+zozo—zo.

From the second and third equation we find

_ G(l—-zo)
vo = 1—21‘0+(1+b2):r8 ’

- bGzg
0 1-—220+(1+bz):c'5”

(3

Substituting into the first Eq. (2) one finds
(1+6H)zd -2+ (1 + ) Flzd

2
+(1+2F)zq + (GT —F) =0 (4a)

Introducing the new parameters

1 G? F
B=—r»r- =2 __% .
1+ 52 a 1+ 52
and the linear transformation
T =%+ 2B ;- F :

we may write Eq. (4a) in the canonical form of a
cubic

P +pT+q=0, (4b)
where v
2
: 3
g= B(1+2F)(2B + F) +G - 2(2B+ F)
3 27
The discriminant of Eq. (4b) is S
2 3
=L . r
A= 4 +‘27.

The curves labeled SN in Fig. 1, determined by
A =0, separate the regions in the parameter planc
(F, G) where system (1) possesses either one or
three fixed points. The precise site of the cusp of
the curve SN is determined by the simultaneous

vanishing of p and ¢. This occurs when

G = 2V126Vab _1+v3
T3+ TSI

The stability of the fixed points is determined
by the eigenvalues w of the Jacobian matrix of
Egs. (1), which satisfy

-t -w -2y -2z
Vo—bz zp-1-uw ~bzyg |=0
byo + 29 bzg To—-1-w
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Fig. 1. The (F, G)-parameter plane of system (1) near the
codimension-2 point. '

leading to the characteristic equation
u3+uw2+vw+w=0, (5)

where
u=a-2(zg-1),

v = (z9—1)? - 2(zg — 1)a

+b%z¢ + 2(y¢ + 22), (6)
w = a(zo — 1) + ab’z?

+2(y8 + 23)(1 = 2o — b2zo)

Ecuation (5) has one zero root along the curves SNV
and one pair of purely imaginary roots along curves
AH* and AH™ of Fig. 1. The first set is the locus
of iimit point bifurcations with the exception of the
cusp in which a pitchfork bifurcation takes place;
the second set is the locus of Hopf bifurcations.
Whken u = 0 and w = 0, Eq. (5) has simultane-
ous’y one zero root and one pair of purely imaginary
roots. By substituting the values of Zo, Y0, 2o into
Egs. (3)-(4a) one identifies a point (G* ~ 1.6829,
F* = 1.6840) in parameter space, denoted by Q in
Fig. 1, which i 2 codimension-2 bifurcation point
(Guckenheimer & Holmes [1983]). It is well known
from bifurcation theory that a system in the vicinity
of such a point may give rise to very rich dynamical
behavior which may subsequently extend far away
in parameter space. In particular:

— Quasi-periodic solutions can be generated
through a secondary bifurcation mechanism.

— Global bifurcations such as homoclinic bifurca-
tions can take place (Shil’'nikov (1969)), giving
rise to closed infinite period orbits that are bi-
asymptotic to a fixed point of the saddle-focus
type, i.e. they converge to it in the double limit
t— +oo0.

These phenomena are analyzed in detail in the
next two sections.

3. Local Bifurcations Around the
Codimension-2 Point

It is well known that the analysis of the principal
bifurcations near the codimension-2 point identified
above is based on the consideration of a truncated
normal form which, in cylindrical coordinates, may
be written as (Gavrilov [1978]; Guckenheimer &
Holmes [1983]):

7 =r(p1 + az + 2%)
z=py+ 22+ 02, (7

b=1.

where the radial and angle variables r and Y are
associated with the occurrence of a pair of complex
conjugate eigenvalues in the characteristic equation.

System (7) is invariant with respect to rotation
around the z-axis, and its trajectories lie on integral
surfaces determined by trajectories of the first two
equations, which are decoupled from the third one.
This reduces the problem to the study of bifurca-
tions occurring in a planar system. We note that
fixed points of this planar system with r = 0 cor-
respond to fixed points of the 3D system (1), fixed
points with 7 # 0 correspond to periodic motions,
and structurally stable limit cycles correspond to
invariant tori.

Depending on the sign of a and that in front
of 2 the topological structure of the trajectories of
system (7) may belong to one of four different types
in a neighborhood of the fixed point. Accurate nu-
merical analysis reveals thet our case curresponds
to a < 0and “+” in the second equation; this hap-
pens to be the richest case from the point of view of
dynamical systems theory. The corresponding bi-
furcation diagram is given schematically in the up-
per part of Fig. 2. The lower part of the figure lists
the change of phase portraits in the (z, ) plane in
a small neighborhood U of the bifurcation point Q,
as one moves counter-clockwise around this point.
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Fig. 1. The (F, G)-parameter plane of system (1) near the
codimension-2 point. ’

leading to the characteristic equation
w3+uw2+vw+w=0, (5)
where
su=a-=2(zo-1),
v=(z¢—1)? - 2(zg — 1)a
+b%zf + 2( + 23), (6)
w = a(zg — 1)? + ab?z2
+2(y8 + 23)(1 - 7o — bzo)

Equation (5) has one zero root along the curves SN
and one pair of purely imaginary roots along curves
AH* and AH™ of Fig. 1. The first set is the locus
of limit point bifurcations with the exception of the
cusp in which a pitchfork bifurcation takes place;
the second set is the locus of Hopf bifurcations.
When v = 0 and w = 0, Eq. (5) has simultane-
ously one zero root and one pair of purely imaginary
roots. By substituting the values of ZTo, Yo, 2o into
Egs. (3)~(4a) one identifies a point (G* = 1.6829,
F* = 1.6840) in parameter space, denoted by Q in
Fig. 1, which is a codimension-2 bifurcation point
(Guckenheimer & Holmes [1983]). It is well known
from bifurcation theory that a system in the vicinity
of such a point may give rise to very rich dynamical
behavior which may subsequently extend far away
in parameter space. In particular:

— Quasi-periodic solutions can be generated
through a secondary bifurcation mechanism.

— Global bifurcations such as homoclinic bifurca-
tions can take place (Shil'nikov [1969]), giving
rise to closed infinite period orbits that are bi-
asymptotic to a fixed point of the saddle-focus
type, i.e. they converge to it in the double limit
t — foo.

These phenomena are analyzed in detail in the
next two sections.

3. Local Bifurcations Around the
Codimension-2 Point

It is well known that the analysis of the principal
bifurcations near the codimension-2 point identified
above is based on the consideration of a truncated
norma! form which, in cylindrical coordinates, may
be written as (Gavrilov [1978]; Guckenheimer &
Holmes [1983)):

T=r1(u + az + 2%)
t=py+22 72, )

v=1.

where the radial and angle variables r and Y are
associated with the occurrence of a pair of complex
conjugate eigenvalues in the characteristic equation.

System (7) is invariant with respect to rotation
around the z-axis, and its trajectories lie on integral
surfaces determined by trajectories of the first two
equations, which are decoupled from the third oOne.
This reduces the problem to the study of bifurca-
tions occurring in a planar system. We note that
fixed points of this planar system with r = 0 cor-
respond to fixed points of the 3D system (1), fixed
points with r # 0 correspond to periodic motions,
and structurally stable limit cycles correspond to
invariant tori.

Depending on the sign of a and that in front
of 72 the topological structure of the trajectories of
system (7) may belong to one of four different types
in a neighborhood of the fixed point. Accurate nu-
merical analysis reveals that our case corresponds
to a <0 and “+” in the second equation; this hap-
pens to be the richest case from the point of view of
dynamical systems theory. The corresponding bi-
furcation diagram is given schematically in the up-
per part of Fig. 2. The lower part of the figure lists
the change of phase portraits in the (2, 7) plane in
a small neighborhood U of the bifurcation point @,
as one moves counter-clockwise around this point.
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Fig. 2. The unfolding of the planar system (7).

For parameter values in the region D, all tra-
jectories leave ncighborhood U as t — +00 and are
attracted to a large-amplitude fixed point as shown
in Fig. 3. )

On SN* there is a structurally unstable fixed
point of saddle-node type with one zero and a pair
of complex-conjugate eigenvalues with positive real
part.

b e e

Y

Fig. 3. The stable focus is the unique limit set for the pa-
rameter values below the saddle-node curve SN, F = 1.7,
G = 1.65.

When coming into the region D, this fixed point

is divided into two: a saddle-focus O; of (1,2}

type, i.e. with one-dimensional stable and the two-
dimensional unstable invariant manifold, and 8
totally unstable (repelling) focus Oa.

On the curve AHT, the characteristic equa-
tion at O, possesses a pair of purely imaginary and

" one positive characteristic exponent. Since the first

Lyapunov value is positive at O,, on crossing the
curve AH* the fixed point becomes a saddie-focus
of (2,1)-type and a repelling periodic orbit L is gen-
erated from it in region D3 through a subcritical
Andronov-Hopf bifurcation. Figure 4 shows a tra-
jectory started near this unstable periodic orbit L.

On entering the region Dy, the periodic orbit
L becomes stable and a totally unstable invariant
torus is born from it, see Fig. 5. On the curve
HC, the torus becomes a heteroclinic connection
between both saddle-foci O; and O3, see Fig. 6.

While approaching the curve AH™ in region Ds
the stable periodic orbit L shrinks into the saddle-
focus O, which becomes stable in region s through
a supercritical Andronov-Hopf bifurcation.

On the branch SN—, the stable focus O3 cos-
lesces with the saddle-focus O, thereby forming 8
structurally unstable fixed point of the saddle-node
type, which disappears on entering the region D1
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X
Fig. 4. Th- totally unstable periodic orbit is the edge of the

2D stable i: -ariant manifold of the saddle-focus O in the
reverse time Ior F = 1.77, G = 1.8.

X
Fig. 5. The totally unstable torus for F = 1.8, G = 1.65.

‘ The. next problem to be solved is to continue the
bifurcation locj in the parameter plane (F, G) away
fom the small neighborhood U of the codimension-

2 point, since we intend to study how this point -

Ofganizes a global bifurcation portrait. Using the

X

Fig. 6. The repelling torus becomes a heteroclinic connec-
tion between saddle-foci O; and O; for F = 1.8, G =1.5.

software LCBIF (Khibnik et al. [1993]) we have nu-
merically extended the bifurcation curves AH and
SH which correspond to the primary and the sec-
ondary Andronov-Hopf bifurcations, respectively,
see Fig. 1. In doing so, a subtle problem arises in
connection with the behavior of homo- and hetero-
clinic solutions. This problem is addressed in the
following section.

a

4. Homoclinic Bifurcations

The bifurcations described in the previous section
are subjected to the condition of invariance with re-
spect to rotations around the z-axis. The straight
line r = 0 is then an integral curve and, in the
case where both O; and O; are saddles, their com-
mon one-dimensional separatrix. Moreover, in such
symmetrical systems, both 2D stable and unstable
invariant manifolds of the saddles O; and O; may
either coalesce or have no common points. As far
as general two-parameter systems are concerned 1D
separatrices of saddle points may coincide at partic-
ular parameter values only, whereas 2D separatrices
of saddles may cross each other along some trajecto-
ries for an open set of parameter values. One further
case is also possible, whereby a 1D-separatrix of a
saddle-focus (with characteristic exponents AL >0,
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Fig. 7.

A2 = A3, Red; < 0) lies in its 2D stable mani-
fold thereby forming a homoclinic loop. If the so-
called saddle value ¢ = Ay + Ay is positive, there
are then infinitely many saddle periodic orbits in a
fixed neighborhood of such a loop, as follows from
the theorem by Shil’nikov [1969].

There are at least two curves of homoclinic bi-
furcations emanating from a codimension-2 point
of the kind identified in Sec. 2 (Gaspard [1987]),
which are associated with homoclinic bifurcations
of saddle-foci O; and O2. We have numerically cal-
culated these curves labeled by H; and H; in the
parameter plane (F, G), which correspond to homo-
clinic loops to saddle-foci O; and O,, respectively,
see Fig. 7. Since the one-dimensional unstable
(stable) separatrix of saddle-focus O; (O;) passes
very closely by the saddle-focus O; (Oy) for param-
eter values near the codimension-2 point, for numer-
ical reasons these bifurcation curves could only be
detected far away from it. Nevertheless, the bifur-
cation parameter values found at particular points
confirm that the oscillations occurring in the homo-
clinic locus decay rapidly when the codimension-2
point is approached (Gaspard [1993]; Kirk [1990]).

The bifurcation diagram of system (1) continued beyond the immediate vicinity of the codimension-2 point.

Along the bifurcation curve H; the saddle value
o at Oj is negative. This means that only a sta-
ble periodic orbit may appear from the homoclinic
loop to the saddle-focus Os. This is valid for the
points where the curve H» coincides with the curve
SN~. At each such point, the system (1) possesses
a saddle-node fixed point with a homaclinic curve
to it (Shil’nikov [1963]; Lykyanov [1982]). Since the
real part of both non-zero characteristic exponents
of the saddle-node is negative, a stable periodic or- -
bit of long period is created in homoclinic bifurca-
tion, see Fig. 8.

A scenario for the appearance of a complex in-
variant set from a saddle-focus was suggested in
Shil’nikov [1991]; Ovsyannikov & Shil'nikov [1992].
The first step is the transition from a stable focus
to a saddle-focus via a supercritical Andronov-Hopf
bifurcation. In our case it occurs when crossing
the curve AH™, below which the stable focus is
the only limit set. Above AH™ the periodic orbit
L (see Sec. 3 and Fig. 4) is the edge of the two-
dimensional unstable invariant manifold W* of tke
saddle-focus. The Floquet multipliers of the peri-
odic orbit become complex but remain within the
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Fig. 8. A long period stable periodic orbit appearing from
a saddle-node for F = 5.0, G = 1.077.

Fig. 9. The formation of a whirl-pool repeller.

unit circle; this causes the unstable manifold to be-
gin to spiral onto the periodic orbit thereby forming
2 “whirlpool”, Fig. 9. The size of scrolls increases
and on the curve H; of Fig. 7 the 2D unstable in-

~o
L

1
—_
T
r

Fig. 10. A homoclinic loop to the saddle-focus O on the
curve H, F =4.0, G = 0.08.

variant manifold W* touches the 1D stable invari-
ant ‘manifold W*, Fig. 10.

Such a non-trivial limit set may inherit the sta-
bility of the stable periodic orbit L thereby forming
a spiral (or screw-like) attractor. Actually in our
case, the complex limit set arose before the cycle
has lost its stability and is attractive backward in
time, i.e. it is a repeller. One can show that the
main cause for this phenomenon is the alternating
sign of the divergence of *%e vector field defined by
Eqgs. (1). Figures 11(a)-ii(c) give three views of
the repeller for different pairs of values of the pa-
rameters F and G.

5. Bifurcation of Periodic Orbits
and Invariant Tori

A strange attractor (repeller) of the spiral type in

a three-dimensional system is as a rule not a con-
ventional set but a quasi-chaotic attractor (repeller)
due to the presence of structurally unstable Poincaré
homoclinic orbits (Ovsyannikov & Shil’nikov [1992];
Afraimovich & Shil’nikov [1983]). The existence of
the latter may lead to saddle-node periodic orbits
and therefore to stable periodic orbits which usu-
ally have very weak and tortuous basins of attrac-
tion (Newhouse [1979]). The situation in the case of
a system with a sign-alternating divergence may be
even more sophisticated, namely, saddle-node bifur-
cations of periodic orbits may cause the appearance
of not only stable periodic orbits but also of totally
unstable (repelling) ones. As proved in Gonchenko,
Turaev & Shil'nikov [1992]; Gonchenko, Turaev &
Shil’nikov [1993], a complete description of a quasi-
attractor is unattainable due to infinitely many
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Fig. 11. Projections of a chaotic repeller for (@) F=25¢= 14, (b) F=5 ¢ = 1.0778; and () F=10,¢ =3

non-controlled bifurcatjops of various types: homo- crossin
clinic, saddle-node, period doubling, etc. We there-  (see Fig. 7) via the flip bifurcation (one multiptier
fore limit ourselves to point out certain types of i €qual to —1). This curve is the first in a period
behavior for Specific parameter values, i

Although stable periodic orbits of sufficiently Fy, Fy are
large periods are Practically invisible within a spira] appearance of a Feigenbaum-like set in the phase

attractoror a repeller, some bifurcations of periodic  space of system (1). Such a limit set may be both
ed numeri- ap attractor and a repeller depending on parame-

orbits of a short period may be detect
cally. The periodic orbit L loses its stability when  terg, The boundary between these regions passes
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through the point F on the curve Fy, where the
structurally unstable periodic orbit has two multi-
pliers equal to —1. This point, where a resonance in
the ratio 1:2 takes place, terminates the curve SH
of secondary Hopf bifurcations. It is also the termi-
nal point of the curve RT on which a torus emerges
from the doubled periodic orbit that appeared in
the flip bifurcation on F). Along the curve RT,
the phase ¥ of the multipliers e**¥ of this struc-
turally unstable periodic orbit is varied from 7 to
0. It implies that any Arnol’d resonance tongue can
adjoin to RT from above. In this region, quasiperi-
odicity is the typical behavior of bifurcations of
system (1). The other end point DC of curve RT
-corresponds to a 1:1 resonance, when the periodic
orbit has two multipliers equal to +1. This point
also lies on the curve C where the periodic orbit
undergoes a saddle-node bifurcation.

6. Discussion

Ve have seen that Egs. (1) can generate a variety
¢f behaviors of considerable complexity, culminat-
ing in the appearance of strange sets of the quasi-
attractor or quasi-repeller type. Given enough time,
a trajectory on such a set will pass close to the
tasins of attractions of its stable periodic orbits.

This will result in transiently a stage of regular
periodic-like behavior and will complicate consid-
erably the applicability of the currently available
algorithms of computation of dimensionalities and
Lyapunov exponents (Mayer Kress (1986]; Abraham
et al. [1989]).

A useful tool for the qualitative analysis of sys-
tems of the above type is the Lyapunov dimension
Dy, of a limit set as defined by the Kaplan-Yorke
formula (Kaplan & Yorke (1979]). Figure 12(a) rep-
resents the result of the numerical computation of
Dy for F =8 and F = 6 and for G in the range
(0.2,1.4). We see a clearcut signature of chaos in
certain regions, i.e. for F = 8 and G around 1. On
the other hand, for F = 6 the dimension drops fre-
quently to values between 1 and 2. This is likely to
reflect the influence, during the integration time, of
the above mentioned stages of periodic-like behavior
interrupting intermittently the chaotic evolution.

The results summarized in Fig. 12 are further
confirmed by the computation of the system’s larg-
est Lyapunov exponent A4, depicted in Fig. 12(b)
as a function of the parameter G. We also see from
this figure that the dynamics for F = 8 is more un-
predictable than for F = 6. Now, according to the
interpretation of F and G (Lorenz (1984, 1987]) a
winter season corresponds, on the average, to larger

L] Ll i
“F28.T=275" —
"F=6.T=275° ----

Fig. 12.
from the integration of Eqgs. (1) during T
the same conditions as in Fig. 12(a).

(2)

(a) Lyapunov dimension of the chaotic repeller for F = 6 and F
= 275 time units. (b) The largest

= 8 and for G in the interval (0.2, 1.4), obtained
Lyapunov exponent of the chaotic repeller under
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“F=8.T=275" —
*F=6.T=275"

Fig. 12.

Y
Fig. 13. The basin of the stable node is extended as the
parameter G is increased, F = 2.5, G = 1.4.

values of these parameters than the summer one.
Our results suggest, therefore, that winter circula-
tion tends to be more unpredictable than summer
circulation. This is in agreement with the recent
analysis of a multi-level primitive equation model

(b)

{Continued)

reported in the meteorological literature (Buizza & -
Palmer [1994]).

For values of F, G beyond the range of
Figs. 12(a) and 12(b) the stable fixed point aris-
ing from the saddle-node bifurcations on curve SN~
(Figs. 1 and 7) captures almost all trajectories if the
system is integrated for a very long time, see Fig. 13.
Nevertheless, the behavior of a trajectory starting
near a saddle-type solution [see e.g. Fig. 11(a)] may
look chaotic for a substantial period of time, as it
will tend to follow the unstable manifold of this so-
lution during a time scale of the order of the inverse
of its largest Lyapunov exponent.
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