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Mechanism of bistability: Tonic spiking and bursting in a neuron model
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Neurons can demonstrate various types of activity; tonically spiking, bursting as well as silent neurons are
frequently observed in electrophysiological experiments. The methods of qualitative theory of slow-fast sys-
tems applied to biophysically realistic neuron models can describe basic scenarios of how these regimes of
activity can be generated and transitions between them can be made. Here we demonstrate that a bifurcation of
a codimension one can explain a transition between tonic spiking behavior and bursting behavior. Namely, we
argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with noncentral homoclinics
may initiate a bistability observed in a model of a leech heart interneuron under defined pharmacological
conditions. This model can exhibit two coexisting types of oscillations: tonic spiking and bursting, depending
on the initial state of the neuron model. Moreover, the neuron model also generates weakly chaotic bursts when
a control parameter is close to the bifurcation values that correspond to homoclinic bifurcations of a saddle or
a saddle-node periodic orbit.
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[. INTRODUCTION model may cause proper transitions between these regimes.
Depending on initial conditions or perturbations these re-
Neurons are observed in one of three fundamental, genegimes may co-exist within certain parameter ranges. Burst-
ally defined modes: silence, tonic spiking, and bursting. Théng behavior has been well described within a framework of
functional role of bursting has been actively discussed irthe methods of qualitative theory of slow-fast systems; see
recent theoretical and experimental studies. There is agreeemprehensive reviews ifil7-19. Of special interest are
ment that it is an important mode for control of rhythmic various mechanisms of transitions between tonic spiking and
movements and is frequently observed in central pattern gepursting[20-24. Some transitions are associated with the
erators and neuronal networks controlling motor behaviochaotic behavior, which is due to the shift dynamics arising
[1]. Also, bursting has been widely observed in sleep andiear a homoclinic bifurcation of a saddler saddle-focus
pathological brain statd®]. More recently, bursting has be- Point of a singularly perturbed syste#2,23,23. Here, we
gun to be identified with other functions. It has been pro-"e€Port a new, distinct scenario where the bifurcation under-
posed to improve reliability of memory formatiof8,4]. lying the transition from tonic spiking into bursting is ho-

Neurons in bursting mode differ in their ability to transmit Moclinic as well, but in distinction, it employs a saddle or a
information and respond to stimulation from those in tomcsaddle-node periodic orbit rather than saddle equilibria. This

spiking mode and appear to play an important role in infor-mechanism explicates smooth transitiorbetween the tonic

) R spiking and bursting activities of the neuron.
\%ﬁ;og;;?g:{? G?n?'h%OSES)f;Qt%r;gen%;mt?l,llrziiagssa?\f dtfggn?cels Bistability means the coexistence of a pair of attractors
o ey : - ted in the ph . W [ lobal bi-

spiking modes, as well as that of different bursting mode separated in the phase spgge]. We describe a global bi

: : Surcation of a saddle-node periodic orbit with homoclinic
with each other, has been observed in modelingll] and s \which provides an explanation for this phenomenon.
experimental12-14 studies and this complexity adds po-

) L ) ~ - Such a saddle-node periodic orbit is sketched in Fig. 1.
tential flexibility to the nervous system. Such multistability Namely, after it splits into a stable periodic orbit and a saddle

f ional £ 1h Multistability h Bne in the phase space, the stable manifold of the latter can
unctiona statle_ 0 I't e_nervfous | syste_m.l ultistability p '8Sseparate the attraction basin of the bursting from that of a
many potential implications for dynamical memory and IN-gap1e periodic orbit representing the tonic spiking. Further-

formation processing in a neurdi,8,14—18. . . : : ) ,
; o . more, we identify a physiologically plausible parameter in
A mathematical model of a single neuron is to demon-, 'y a phy gicatly p P

. . ; . the model(1) that can control duration of a burst, the time
strate regimes similar to those observed in experiments. Befﬁterval between the first and last spikes in the burst.

sides, variations of certain biophysical parameters in the In the paper, first we introduce a model of a single leech
neuron. Then we develop a general geometrical framework

for the analysis of periodic solutions of slow-fast dynamical

*Electronic address: ashilnikov@mathstat.gsu.edu systems. It allows us to give a general phenomenological
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transient potassiunlk,). The third group consists of two
low-threshold calcium currents: one rapidli,p and one
slowly inactivating(lc,9. The last group consists of a single
current, carried by both sodium and potassium: a
hyperpolarization-activated currefi,). All these currents,
except for the fast sodium current, were quantified in voltage
clamp experimentg29]. The model equations fdg, current
were borrowed from the original work by Hodgkin and Hux-
ley adjusted for leech kinetics. None of these currents is
dependent on the intracellular concentration of any particular
ion. A canonical model of a single neuron has been con-
structed and tuned to reproduce experimentally observed be-
haviors[27]. It consists of 14 ordinary differential equations
running at multiple time scales which vary from a few mil-
FIG. 1. (Color onling Saddle-node periodic orbit., with non-  liS€conds through seconds. As alluded to above, a compre-
central homoclinics: the unstable manifol# comes back td, ~ hensive analysis of this model would be quite difficult and
crossing transversally the nonleading manifaféf. The latter sepa-  challenging.
rates the node regioffrom the right of W9 where the periodic Blockade of groups of currents in living heart interneu-
orbit L, is stable from the saddle region containing the unstablgons simplifies neuronal dynamics and elicits characteristic
manifold WX comprised of the trajectories converginglig,as time ~ behaviors. These characteristic behaviors present interesting
tends to =c. phenomena for study from the perspective of the theory of
dynamical systems. One of the commonly observed charac-

description for the Lukyanov-Shilnikov bifurcation of a teristic behaviors is observed under blockade of‘Qaur-
saddle-node periodic orbit with noncentral homoclinics in€MtS. In leech neurons, application of divalent ions like
these systems. We show how this bifurcation creates a bist& - Which block C&" currents, along with partial block of
bility in a generic neuron model. Throughout the presentaQUtWard currents, elicits slow platea_ullke oscillations yvlth a
tion we draw parallels between the phenomenological deP€riod up to 60 s and plateau duration up to 20 s. This phe-
scription and the accurate numerical bifurcation analysis of®™enon persists after a blockadel pf

the model of the single leech neuron. The developed tech- Previously, in our modeling studi¢s1], we addressed the
nique is applicable to a broad class of neuron models. oufuestion of how these slow temporal characteristics are pro-

results make feasible predictions for future experimentafuced by a system with dynamics based on much faster time
studies. scales(time constants of the ionic currents involved do not

exceed 1 5 We derived a simplified neuron model by taking
into account that the experimental conditions eliminated or
Il. NEURON MODEL reduced the contribution of certain currents to the dynamics
of the neuron. This simplified model, based on the dynamics
A bursting regime reflects complexity in the dynamics of of I, and I, currents, is described as a system of three
various membrane ionic currents, operating at different timefifferential equations. We showed that the classical model of
scales. The ionic currents are commonly quantified througlhe transient Nacurrent is sufficient for the generation of
voltage-clamp experiments and modeled according to a fottong plateau behavior due to the properties of a window
malism introduced by Hodgkin and HuxI¢g6]. A complete  current(a transient Nacurrent can be a persistent “window”
neuron model, including all currents identified experimen-current in a certain range of membrane potential valuEse
tally, is rather complex for thorough studies. simplified model(1) can also produce slow plateaulike oscil-
The relatively small number of neurons in invertebratelations with a sufficiently long plateau phase.
nervous systems and the possibility to identify most of them To bring the 14D canonical model developed[#9] in
from preparation to preparation all make these identifiableaccordance with the experimental conditions described
neurons attractive for the dynamical systems analysis. Herabove, we remove from the model the equations and terms
we exploit identified oscillator interneurons that are part ofdescribing blocked currentks ., lcas andly,. For simplicity,
the leech heartbeat central pattern generator. we assume that the partial block of outward currents com-
When isolated pharmacologically from the rest of the netpletely removedy,, as well aslx,, whereas it reduceks.
work these neurons show autonomous bursting behavioThe currently,p is ignored for simplicity. The resulting
[27]. In these neurons, eight voltage-dependent ionic currentsiodel described ifi11] reads as follows:
have been well identified and characterizede[28,29 and
references thereinClassified by their ionic specificity, these CV' = = (GeaMio(V ~ Ex) + 91(V— Ey)
currents are separated in four groups. The first group consists — i 3 _
of two sodium currents: a fast sodium currdiyg, and a * Onaf (= 150,0.0308/) eV = Enal)
persistent sodium curreltty,p). The second group consists it
of three potassium currents: a delayed rectifierlike potassium , _1(=83,0.018 #;5".V) - my,

current(ly,), a persistent potassium currdii,), and a fast K2 ™ Tk '
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FIG. 2. (Color onling Coexistence of spiking and bursting
modes in the modell) in the (my,,V)-projection for Vip'=

—-0.025 98 V. Initial conditions leading to tonic spiking and bursting

are (V,mg»,hya)=(0.0,0.164,0.08and (0.0, 0.165, 0.08 respec-
tively. The small round periodic orbit iiia) corresponds to the

tonic-spikes shown iiib); the larger, bursting cycle corresponds to

the waveform shown iric). The topology of bursting is illustrated
in Figs. 3 and &d).

’
hNa_
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where the variable¥, my,, andhy, are the membrane po-
tential, activation of,, and inactivation of,, respectively.
The parameters are the followin@:is the membrane capaci-
tance, gk, is the maximum conductance of,; Ex, and
Ena are the reversal potentials of'kand Nd, respectively;
Ona is the maximal conductance of,; g, and E; are the
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FIG. 3. (Color onling Bifurcation diagram of the fast subsystem
in the (z,x)-extended phase plane. The cuMg, consists of equi-
librium points of the phase subsystem; its limit cycles span the
surfaceM . The curve(x) gives the average coordinate of the
limit cycles. The nullclinez=0 crosses the unstable branchdf,
at a single point corresponding to an unstable equilibrium state of
the whole system. The arrowed curves outline the start and the end
of a burst. The matching phase space of the neuron sygkeis
presented in Fig. (8)).

IIl. PHENOMENOLOGICAL DESCRIPTION

In the model(1), the time constant of the activation of the
currently, is more than 20 times larger than those of the
membrane potentia/ and inactivation of the currenly,.
Hence, we identifyn,, as the slow phase variable axdnd
hya as the fast ones. This allows us to considér as a
singularly perturbed system written in the following form:

(2)

where x e R"(n=2) and ze R! are the fast and the slow
phase space variables, respectivelys a vector of control
parameters, and Qu<1. Both functions,F and G, are
smooth enough, moreoves,= g(x, ) -z as follows from the
presentation of activation and inactivation variables of ionic
currents according to Hodgkin-Huxley formalism.

Xx=F(x,2), z=uG(Xze),

conductance and reversal potential of the leak current, re- When w=0, the fast and slow subsystems are decoupled.
spectively;rx, andry, are the time constants of activation of Now, the variablez serves as a governing parameter for the

lx> and inactivation ofl \,, respectively;\/‘fgft is the shift of

the membrane potential of half-inactivation lgf, from its
canonical value; and is a Boltzman function:f(x,y,2)

fast subsystem. The functidh is assumed to satisfy some
conditions typical for the systerfi). They are illustrated in
Fig. 3. The first one is that, depending anthe fast sub-

=1/(1+eV*?), The values of the parameters used insystem has either one or three hyperbolic equilibrium states.

this study are C=0.5nF,gk,=30nS,E(x=-0.07V,
Ena=0.045 V, Qn.=200 nS,g;=8 nS,E;=-0.046 V, 7,
=0.9 s, andny,=0.0405 s. We us¥33" as a bifurcation pa-
rameter.

One of the features of the modé€l) is the bistability

The coordinates of equilibria of the fast system are found
from the equatiork(x,2)=0 that defines a nullclin® ., hav-
ing a distinctiveZ-shape in projection onto thig, x)-plane.
The two turning points oM, atz, and Z,, correspond to
the saddle-node bifurcations in the fast subsystem where a

where stable tonic spiking coexists with the bursting modepair of equilibrium states coalesce. In the inter\zé,{<z

as shown in Fig. 2.

<z§n, the system(2) has three equilibria. The middle seg-
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ment of M, is comprised of saddle points. The upper and
lower branches of the nullclinkl, correspond to the depo-
larized and hyperpolarized states of a neuron, respectively
The hyperpolarizedsolid) branch of M., is comprised of
stable equilibria of the fast subsystem. It is supposed that the
stable focus on the upper branch becomes unstable through
generic(codimension-oneAndronov-Hopf bifurcation when
z passes the critical valuay <z§n. There are the two types
of this bifurcation: sub- and supercritical. In the subcritical
case, the stable focus becomes unstable when a repellin
limit cycle collapses into it. If there are no other equilibrium
states before,y, then this unstable cycle may only originate
from a saddle-node bifurcation of limit cycles. This saddle-
node bifurcation also generates a stable limit cycle that sur-
rounds both the equilibrium state and the unstable limit
cycle. In the supercritical case, the stable limit cycle emerges
from the focus ag increases through the bifurcational value
Zny- In either case, the supercritical Andronov-Hopf bifurca-
tion or the saddle-node bifurcation for limit cycles gives rise z Z1 z zlc Z2
to the surfacéVl} - comprised solely of the stable limit cycles AH sn h “sn sn
of the fast subsystem. The subsequent evolution of the stable
limit cycle asz increases further can develop in two different ~ FIG. 4. (Color onling Tangency between the nullclings) =0
ways. For example, the brand{. may terminate at a ho- and (x) makes a saddle-node periodic orhi, Its 2D unstable
moclinic bifurcation of the saddle point on the middle branchmanifold W (composed of the segment of the surftg. between
of Mg, like in [22,23, i.e., the stable limit cycle becomes a Zyandz;and the hyperpolarized branchf) comes back to the
homoclinic orbit of the saddle point with the negative saddlebifurcating orbitL, along the nonleading manifold® (gray disk.
value, which is a sum of the characteristic exponents of thd he vertical vectors indicate the points of the fast jumps between
saddle point of the fast subsystem. Oppositely, if the sadd@e branches. This sketch is a singularly perturbed analog of Fig. 1.
value is positive, then another, unstable limit cycle bifurcates
from the homoclinic orbit ag increases through,, thereby  tions). Therefore, the phase point of the whole system will
constituting the “unstable” surfackl].. Hence, asz ap-  follow the same path in théz,x)-phase space. Namely, it
proaches the value';np the stable and the unstable limit translates slowly along the lower branch bf,, leftward
cycles get closer and merge finally into a double oniicﬁt until the fold. Then, it makes a rapid, vertical jump up onto
This value corresponds to a saddle-node bifurcation fothe surfaceM c. Afterwards, it moves slowly rightward coil-
the limit cycles in the fast subsystem. The last scenariong aroundM . Having reached the edge bf . at z'scn, the
makes the united surfadél c=M;-UM}. look like it is  phase point falls straight down onlié, to start a new cycle.
turned inside oufsee a sketch in Fig. 3 and its numerical Such trajectory behavior is associated with bursting in neu-
reconstruction in Fig. @l)]. ron models. The number of spikes in a burst is a number of
After the stable limit cycle has vanished in the saddle-complete revolutions of the phase point aroiMg..
node bifurcation az>Z<, a neighboring phase point starts  In the following section we discuss the conditions under
seeking another attract@see Figs. 3 and(b)]. Such an at- which the system has a stable periodic orbit on the surface
tractor is the stable equilibrium state on the lower branch oM; that corresponds to tonic spiking. The presence of this
My As the parametez is now decreased, the phase pointorbit does not let the trajectories of the system, circulating
follows this hyperpolarized branch towards the low kneearoundM;, pass throughout it.
point atz.,. The disappearance of this steady-state attractor
for z<Z, triggers the phase point to switch back to the Average nullclines and periodic orbits
stable limit cycle onM}c. _ .
Next we discuss the dynamics of the whole, singularly —1Ne surfaceM,c is composed of the limit cycles of the
perturbed system(2) when O<p<1. Introduce another [@StsSystem a=0.Letus introduce the average valix of
nullcline z=0, which is the surface given b@(x,z,&)=0 thex-coordinate of such allelt cycle(t;z) with periodT(z)
(see Fig. 3 Let z be negative oM, wherever it is below —at given 2:(x(2)=[1/T(2]f§” ¢(t;2)dt. By varying z, we
the nulicline and positive above it. An intersection point of define the corresponding continuous curve in(he) space
this nulicline with the nuliclineM, (wherex=0) is the equi- (see Fig. 4 Evidently, it originates at the Andronov-Hopf
librium state of the whole system. To make the system exbifurcation atz,y and terminates at the homoclinic bifurca-
hibit bursting behavior, let this equilibrium state be unstablefion atz,. The curve has a distinctive knee pointz@ cor-
i.e., be on the unstablédotted branch of Mg, It follows  responding to the saddle-node bifurcation of the stable and
from the works by FenichdB0] that both surfacesVle;and  unstable limit cycles of the fast subsystem.
M, ¢, will persist as invariant manifolds for small enough In the first approximation, the dynamics of the singularly
as well. Moreover, each remaing-close to the original perturbed system arounld}. is determined, by following
wherever it is normally hyperboli¢e.g., far from bifurca- “averaged” slow subsystem:
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T(2)

e G(e(t;2),z¢)dt.

2= u(G(z,e)) = @),

3
Hence, if(G(z,£)) >0 within z%, < z< ZS at some, then the
surfaceM (¢ is transitive for solutions of the syste(8) that
coil aroundM ¢ slowly (at the rate of~u) translating right-
ward.

Let someZ® betweenz,, and 25, be a simple zero of the
function (G((z,¢))) for some fixede. This zero is also an

PHYSICAL REVIEW E 71, 056214(2009

asVe—¢. Whene<g', i.e., there are no periodic orbits on
M, which becomes transitive, then the neuron exhibits
solely bursting activity.

IV. BISTABILITY AND HOMOCLINIC SADDLE-NODE
BIFURCATION

In order to reveal the origin of bistability, we continue to
draw the parallels between the phenomenological description

equilibrium state of this averaged slow subsystem. This equiof bifurcations in the systert2) and the empirical studies of

librium state is stable i{G(Z°,¢)),<0, or unstable other-
wise. Then, as follows from Pontryagin-Rodygin the3],

the neuron systertl). We will also discuss a mechanism that
gives rise to the onset of chaos in the system. In both cases

every zero of(G) corresponds to a periodic orbit of the Primary roles are played by the homoclinic bifurcations of
whole singularly perturbed system. The stability of the peri_the _saddle and t.h.e saddle-node periodic orbllts. Since the lat-
odic orbit in thex direction is determined by that of the ter is the organizing center of our construction, let us start

corresponding limit cycleM, . of the fast subsystem at the With its analysis first.

given 2°. Recall that the component}. and M}« of M ¢

A spatial saddle-node periodic orbit has two unique mani-

are comprised of the stable and unstable limit cycle of thd0!ds, strongly stable\®*and unstablé/\®; in the particular

fast subsystem. Therefore, to study bifurcations of stable pez3S€ of R* both are of dimension tw32]. The strongly
riodic orbits of the singulary perturbed system, we need to>t@Ple manifold\®*breaks a vicinity of the saddle-node pe-

examine the upper branch of the cuf corresponding to
the stable componeM ;..

Recall too that the functiorG is linear in z:G(x,z,¢)
=g(x,e)—z Define an average nullcling)=0 as the para-
metrically given curve

[2=(9(2)), x=(x())]
with
(0

@O =[] 9e(t;)),e)dt

0

and <x(§))=[1/T(§)]fg(0go(t;g)dt. Any of its intersection
points with the curvex) [comprised of pairgz,(x(z)))] cor-

respond to a zera® of (G), i.e., to a periodic orbit of our
system. Note that iG is linear in bothx and z, then the
average nullclindz)=0 and the regular nullcline=0 are the

riodic orbit Lg, into two regions: node and saddle. In the
node region, the saddle-node periodic orbit is stable, i.e., a
trajectory converges to it as time tends te.4#n contrastL,

is repelling in the saddle region, where it has the unstable
manifold WM comprised of orbits converging to the saddle-
node in backward time. We are interested in the global be-
havior of this unstable manifold, more specifically, whether it
can be homoclinic, i.e., biasymptotic to the saddle-node pe-
riodic orbit. Recurrent behavior of the solutions of the slow-
fast systems depicted in Fig. 2 supports this assertion.

In this paper, we consider a particular situation where the
unstable manifoldW! of the saddle-node periodic orbit
comes back to the orbit along the strongly stable manifold
WS of the saddle-node periodic orHit,; see the sketch in
Fig. 1.

The case wher&W comes back from the node region
making infinitely many revolutions, the so-called blue-sky
catastrophe, was discovered and analyzed for the neuron sys-

same curve. Evidently, this is not the general case. Furthetem (1) in [33]. Note that since an intersection of two sur-

more, in contrast to the curnz=0, which can be found ana-

faces inR3 is transverse, the presence of noncentral ho-

lytically, the analysis of the location and the shape of themoclinic connections to the saddle-node does not raise the
average nuliclingz)=0 in the(z,x) space requires numeric codimension of the bifurcation. This bifurcation was first in-

simulations. The corresponding average nullclifes and
(my,)=0 of the neuron moddfl) are shown in Figs. 4,(6),
and 6 for different values of the bifurcation parameh".
Next let us elaborate on how the average nullclize
=0 may depend on the control parameten the slow equa-
tion of the system. Suppose thabe introduced so that the

nullcline (x)=0 crosses the upper, stable branch of the curv
(x) twice for somee>¢". Then, these intersection points

correspond to a pair of periodic orbits, one stalilg, and
one, L, of the saddle typdsee Figs. &) and 3c)]. By

troduced and studied by Lukyanov and Shilniki@4,35.
Let us elaborate on its basic properties. The unfolding of the
bifurcation is sketched in Fig. 6. This bifurcation is best de-
scribed by using a two-dimensional Poincaré map that is
defined on some cross section transverse to the periodic or-
bits. The point where a periodic orbit hits the cross section is
a fixed point of the Poincaré map. If the fixed point is stable,
o is the corresponding periodic orbit. In the case of the
saddle-node periodic orbit, there is a fixed point of the
saddle-node type with a single multiplier equal to +1. So,
when the saddle-node periodic orbif, decomposes into the

decreasing, the distancg bet\iveen the orbits decregses, an&able,Ln, and the saddld,, periodic orbits, the correspond-
when the average nuliclingg=0 has a tangency with the 4 saddle-node fixed point breaks into two points t0o: one

curve (x) at somee’, then the system possesses a saddlestable and one fixed point of the saddle type. Let this occur

node periodic orbilg, which vanishes foe <&" [see Fig.
5(d)]. Additionally, we require thatG(2°,&")), # 0. If so, the

above the corresponding bifurcation curve SN in Fig. 6. Be-
cause the saddle-node fixed point has noncentral homoclinic

distance between the bifurcating periodic orbits is evaluatedrbits generated by transverse crossings of its unstable and
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FIG. 5. (Color) (a) Intersection points of the average nullclite =0 with (x) yield one stablel.,, and one saddld,,,, periodic orbit of
the singularly perturbed system. The stable maniiéfiof the saddle periodic orbitg bounds the attraction basin &f,. This situation
corresponds tdb) and inset 4 in Fig. 6(b) Intersection points of the nullclingsn,,)=0 and(V) yield the stable and saddle periodic orbits
of the neuron systerfl). Compare tqa). The waveform of the bursting and tonic activities are shown in Figc)2ZThe saddle periodic orbit
in (C1) no longer separates the basing of the bursting from the basing of the stable periodic orbit corresponding to the tonic spiking activity
(C2) atVSKQ“:—O.027 V. This type of behavior takes place to the left of the bifurcation cBsuénset 2 in Fig. 6. (d) Geometry(D1) and
the waveform(D2) of attracting bursting in the neuron mod@) at V§y'=-0.027 V. The intersection point of the nullclineg,=0 andMg,
is the unstable equilibrium state ¢f). The surface oM, is composed of the periodic orbits continued as the control paral s
varied. There is no intersection between the average nuliclimgs)=0 and(V). Accordingly, the trajectory shown coils arouhd,_c
translating rightwards and converges to the bursting attractor. Compare with Fig. 3.
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FIG. 6. (Color online There are three principal bifurcation g
curves in the unfolding for the Lukyanov-Shilnikov bifurcation of a _13:
saddle-node fixed point with noncentral homoclinicset 1 show- -
ing the Poincaré magp The two bifurcation curvesB; and B, z
which are the boundaries of the darkened sector, correspond to th § 5l —-—
very first(inset 4 and last(inset 2 homoclinic tangencies between %
the stableWs, and unstabley\W, sets of the saddle fixed point. The i
complex hyperbolic structure existing in this sector is due to trans- ol . . . . L
-26 —24 -22 -20 -18 -16

verse homoclinic crossings of these datset 3. This structure will
persist also after the disappearance of the saddle-node point beneau
the segment indicated on the bifurcation curve SN.

shift
VeI mv)

FIG. 7. (Color online Temporal characteristics of bursting en
route to spiking. The burst periodtop chari increases as

strongly stable manifolds, it follows that after the splitting, ~|in(vs+0.260 086 §. The logarithmic fit of the burst duration
the saddle point inherits the transverse homoclinic structurg, given in Fig. 8. Interburst intervaimiddle) and frequency of

too. The presence of transverse homoclinic orbits implies thepikes(bottom) remain almost constant.
existence of Smale horseshoes, the abundance of saddle tra-
jectories, and chaos, which persist even after the saddle-node The bistability in the neuron modéL) is illustrated in
disappears below the indicated sector. It is the main featurpig. 5b). Depending on initial condition, the system may
of saddle-node bifurcations of this kind. _ _ generate tonic spiking, if the initial point is in the attraction
Here, the stablé., and saddle.s periodic orbits coexist domain of the stable periodic orbit, or it generates bursting
on the tubeMp. Of special interest here is the right bound- activity. The saddle periodic orbit separates these attraction
ary B, (inset 4 in Fig. 6. This boundary corresponds to the gomains. The knowledge of the topology of the solutions of
first tangency between the stab and unstablé\" mani-  the sjow-fast system gives a clear intuition as to how differ-
folds of the saddle periodic orbit. To the right froBy, the  ent kinds of stimulations may switch operation of the neuron
stable manifold\® of the saddle orbit bounds the attraction petween the tonic spiking and bursting modes. The influence
basin of the stable periodic orbit. This situation correspondgy stimulation on the slow variablexy,, is apparently most

to the coexistence of tonic spiking and bursting activities inimportant. For the parameter regime presented in iy, §
the neuron, i.e., to bistability. Geometrically, the bistability in

the dynamics of the systen(2) takes place when the .
z;rcoordinate of the left knee point dvle is on to the right 210
from the saddle periodic orbiit; on the surfacé/} [see Fig. S 80
5(a)]. £ 60
Let us return to consideration of the behavior of the solu- a
tions of the system 2 in the bistability sector between the 4 40
bifurcation curvesB; andB, in inset 3 of Fig 6. @ 20
In our phenomenological description, we assume that the 10 s 6 "
phase point makes momentarily vertical jumps between the |n(v§";" +0.02601)

slow motion surfacedlqqandM,c. In the neuron model, the

appearance of these jumps may vary between projections of F|G. 8. (Color online Logarithmic fit of the dependence of the
the phase spaceompare for example Figs. 2 and, re-  purst duration on the control parametéfa™. Note that the burst
senting thdmy,, V)- and(my,, —hya)-phase portraits, respec- duration obeys the same law because the interburst interval hardly
tively. changes within the indicated parameter interval.
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FIG. 9. (Color onling Intermittent transition to tonic spiking. A %0 108
number of bursts are generated before the stable periodic orbit cap- FIG. 10. (Color onlin@ Chaotic bursting at \/f(';'ft
tures the phase point as illustrated in a projection to the =0.0336709 V presented in a projection on théy,, Mq,) plane
~hna,Mio)-phase planda) and as a voltage-time seri¢h). The  (a) and as a voltage-time serigb). Adjusting Vi regularizes
model (1) is at control parametevy3"=0.033 67 V. This intermit-  pyrsting as shown in Fig. 2.
tency corresponds to regidB) in Fig. 6.

Mk, is chosen below 0.16, the tonic spiking is observedfold W of the saddle periodic orbit will get attracted to the
while the bursting occurs for values exceeding a thresholdtable one right after a single cycle of burstiisge inset 2 in
0.17, provided the same initial values fgrand hyg, Fig. 6). The corresponding phase space portrait of the neuron

When the control parametafi is decreased, the stable system(1) is shown in Fig. ).
and unstable periodic orbits move farther apart, so that the The intermittency in the system takes place between the
unstable manifold of the saddle orbit can no longer boundoundaried3; andB, (see Inset 3 in Fig.)6 Here, the system
the attraction basin of the stable orbit where the phase poinhay generate a train of bursting before it starts firing con-
tends to as it jumps off the hyperpolarized phase of the burstinuous spikes. The exact number of bursts and duration of
ing, as shown in Fig. ®). This situation corresponds to inset each burst in the train are impossible to predict. This is an-
2 in Fig. 6 on the left of the curvB,. Here, the neuron may other consequence of the complex shift dynamics due to ho-
only exhibit tonic spiking. moclinic wiggles pictured in Fig. Ginset 3. Figure 10

Observe that the duration of bursting phase may growshows a chaotic train composed of four bursts. The width of
with no bound as the control parameter is moved toward th¢he parameter interval corresponding to the intermittency is
transition value between the regimes, while the interburssmall in a singularly perturbed system with| < 1. Further-
interval remains nearly constafsee Figs. 7 and)8 The  more, it is proportional to the diameter of the tube of the
estimate for the growth of the burst period is given byunstable manifold\, which is shrinking while it gets back
T(z,a")|In(a-a")|, wherea" is a deviation of a control pa- to the saddle-node periodic orlitee the sketch in Fig.)1
rameter from the boundary, into the bursting region, and Recall that the low hyperpolarized branch M, is com-
T(z,a") is the period of the limit cycle on the surfab ¢ of prised of the stable equilibria of the fast subsystem. In virtue
the fast subsystem at the givenNote also that the bursting of Liouville’s theorem, a low estimate for volume compres-
behavior is not necessarily regular here but can be chaotic &on can be given bye® ™7 with 7=(z5-2z)/u and
well, especially when the phase point may pass close by thdiv F <0 on the low branch of M, So, if u is small, so is
stable periodic orbifsee Fig. 10 the diameter of the tube of the unstable manifé\l and,

On the left of the boundar,, the bistability ends so that hence, is the size of the intermittency interval in the param-
the tonic spiking becomes the dominant regime. For theeter space. This makes this kind of intermittency transition
model(2), this situation occurs when the left knee pointé';\t hard to find in a singular perturbed system. On the other
turns out to be to the left of the saddle periodic othjton  hand, its presence can serve as indirect evidence that the
M{c. Any trajectory starting on the right of the stable mani- system does not run on multiple time scales.
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V. CONCLUSION Our description is not restricted to the given three-
] - dimensional neuron model and holds for higher dimensions
We propose a new general scenario of transition betweegs well. Since the key bifurcation of the scenario is of codi-
tonic spiking and bursting. This mechanism also explainsnension one, it may be revealed in electrophysiological ex-
bistability in the system, where the bursting mode coexistperiments. The signatures of the key bifurcation @neco-
with tonic spiking so that either mode can be attained by arkxistence of tonic spiking and burstin@) smooth transition
appropriate choice of initial conditions. The core of the petween the two regime€3) logarithmic growth of the burst
mechanism is based on a bifurcation of codimension one fogyrationen routetoward tonic spiking; and4) chaotic inter-
ﬁ.tsaddle'node pel’iodic orbit with noncentral homoclinic Or'mittency Of transient bursting turning into tonic Sp|k|ng
its.
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