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Neurons can demonstrate various types of activity; tonically spiking, bursting as well as silent neurons are
frequently observed in electrophysiological experiments. The methods of qualitative theory of slow-fast sys-
tems applied to biophysically realistic neuron models can describe basic scenarios of how these regimes of
activity can be generated and transitions between them can be made. Here we demonstrate that a bifurcation of
a codimension one can explain a transition between tonic spiking behavior and bursting behavior. Namely, we
argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with noncentral homoclinics
may initiate a bistability observed in a model of a leech heart interneuron under defined pharmacological
conditions. This model can exhibit two coexisting types of oscillations: tonic spiking and bursting, depending
on the initial state of the neuron model. Moreover, the neuron model also generates weakly chaotic bursts when
a control parameter is close to the bifurcation values that correspond to homoclinic bifurcations of a saddle or
a saddle-node periodic orbit.
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I. INTRODUCTION

Neurons are observed in one of three fundamental, gener-
ally defined modes: silence, tonic spiking, and bursting. The
functional role of bursting has been actively discussed in
recent theoretical and experimental studies. There is agree-
ment that it is an important mode for control of rhythmic
movements and is frequently observed in central pattern gen-
erators and neuronal networks controlling motor behavior
f1g. Also, bursting has been widely observed in sleep and
pathological brain statesf2g. More recently, bursting has be-
gun to be identified with other functions. It has been pro-
posed to improve reliability of memory formationf3,4g.
Neurons in bursting mode differ in their ability to transmit
information and respond to stimulation from those in tonic
spiking mode and appear to play an important role in infor-
mation transfer and processing in normal states of the ner-
vous systemf5,6g. The coexistence of bursting and tonic
spiking modes, as well as that of different bursting modes
with each other, has been observed in modelingf7–11g and
experimentalf12–14g studies and this complexity adds po-
tential flexibility to the nervous system. Such multistability
may be controlled by neuromodulators and thus reflect the
functional state of the nervous system. Multistability has
many potential implications for dynamical memory and in-
formation processing in a neuronf7,8,14–16g.

A mathematical model of a single neuron is to demon-
strate regimes similar to those observed in experiments. Be-
sides, variations of certain biophysical parameters in the

model may cause proper transitions between these regimes.
Depending on initial conditions or perturbations these re-
gimes may co-exist within certain parameter ranges. Burst-
ing behavior has been well described within a framework of
the methods of qualitative theory of slow-fast systems; see
comprehensive reviews inf17–19g. Of special interest are
various mechanisms of transitions between tonic spiking and
bursting f20–24g. Some transitions are associated with the
chaotic behavior, which is due to the shift dynamics arising
near a homoclinic bifurcation of a saddlesor saddle-focusd
point of a singularly perturbed systemf22,23,25g. Here, we
report a new, distinct scenario where the bifurcation under-
lying the transition from tonic spiking into bursting is ho-
moclinic as well, but in distinction, it employs a saddle or a
saddle-node periodic orbit rather than saddle equilibria. This
mechanism explicates asmooth transitionbetween the tonic
spiking and bursting activities of the neuron.

Bistability means the coexistence of a pair of attractors
separated in the phase spacef37g. We describe a global bi-
furcation of a saddle-node periodic orbit with homoclinic
orbits, which provides an explanation for this phenomenon.
Such a saddle-node periodic orbit is sketched in Fig. 1.
Namely, after it splits into a stable periodic orbit and a saddle
one in the phase space, the stable manifold of the latter can
separate the attraction basin of the bursting from that of a
stable periodic orbit representing the tonic spiking. Further-
more, we identify a physiologically plausible parameter in
the models1d that can control duration of a burst, the time
interval between the first and last spikes in the burst.

In the paper, first we introduce a model of a single leech
neuron. Then we develop a general geometrical framework
for the analysis of periodic solutions of slow-fast dynamical
systems. It allows us to give a general phenomenological*Electronic address: ashilnikov@mathstat.gsu.edu
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description for the Lukyanov-Shilnikov bifurcation of a
saddle-node periodic orbit with noncentral homoclinics in
these systems. We show how this bifurcation creates a bista-
bility in a generic neuron model. Throughout the presenta-
tion we draw parallels between the phenomenological de-
scription and the accurate numerical bifurcation analysis of
the model of the single leech neuron. The developed tech-
nique is applicable to a broad class of neuron models. Our
results make feasible predictions for future experimental
studies.

II. NEURON MODEL

A bursting regime reflects complexity in the dynamics of
various membrane ionic currents, operating at different time
scales. The ionic currents are commonly quantified through
voltage-clamp experiments and modeled according to a for-
malism introduced by Hodgkin and Huxleyf26g. A complete
neuron model, including all currents identified experimen-
tally, is rather complex for thorough studies.

The relatively small number of neurons in invertebrate
nervous systems and the possibility to identify most of them
from preparation to preparation all make these identifiable
neurons attractive for the dynamical systems analysis. Here
we exploit identified oscillator interneurons that are part of
the leech heartbeat central pattern generator.

When isolated pharmacologically from the rest of the net-
work these neurons show autonomous bursting behavior
f27g. In these neurons, eight voltage-dependent ionic currents
have been well identified and characterizedsseef28,29g and
references thereind. Classified by their ionic specificity, these
currents are separated in four groups. The first group consists
of two sodium currents: a fast sodium currentsINad and a
persistent sodium currentsINaPd. The second group consists
of three potassium currents: a delayed rectifierlike potassium
currentsIK1d, a persistent potassium currentsIK2d, and a fast

transient potassiumsIKad. The third group consists of two
low-threshold calcium currents: one rapidlysICaFd and one
slowly inactivatingsICaSd. The last group consists of a single
current, carried by both sodium and potassium: a
hyperpolarization-activated currentsIhd. All these currents,
except for the fast sodium current, were quantified in voltage
clamp experimentsf29g. The model equations forINa current
were borrowed from the original work by Hodgkin and Hux-
ley adjusted for leech kinetics. None of these currents is
dependent on the intracellular concentration of any particular
ion. A canonical model of a single neuron has been con-
structed and tuned to reproduce experimentally observed be-
haviorsf27g. It consists of 14 ordinary differential equations
running at multiple time scales which vary from a few mil-
liseconds through seconds. As alluded to above, a compre-
hensive analysis of this model would be quite difficult and
challenging.

Blockade of groups of currents in living heart interneu-
rons simplifies neuronal dynamics and elicits characteristic
behaviors. These characteristic behaviors present interesting
phenomena for study from the perspective of the theory of
dynamical systems. One of the commonly observed charac-
teristic behaviors is observed under blockade of Ca2+ cur-
rents. In leech neurons, application of divalent ions like
Co2+, which block Ca2+ currents, along with partial block of
outward currents, elicits slow plateaulike oscillations with a
period up to 60 s and plateau duration up to 20 s. This phe-
nomenon persists after a blockade ofIh.

Previously, in our modeling studiesf11g, we addressed the
question of how these slow temporal characteristics are pro-
duced by a system with dynamics based on much faster time
scalesstime constants of the ionic currents involved do not
exceed 1 sd. We derived a simplified neuron model by taking
into account that the experimental conditions eliminated or
reduced the contribution of certain currents to the dynamics
of the neuron. This simplified model, based on the dynamics
of INa and IK2 currents, is described as a system of three
differential equations. We showed that the classical model of
the transient Na+ current is sufficient for the generation of
long plateau behavior due to the properties of a window
currentsa transient Na+ current can be a persistent “window”
current in a certain range of membrane potential valuesd. The
simplified models1d can also produce slow plateaulike oscil-
lations with a sufficiently long plateau phase.

To bring the 14D canonical model developed inf29g in
accordance with the experimental conditions described
above, we remove from the model the equations and terms
describing blocked currents:ICaF, ICaS, andIh. For simplicity,
we assume that the partial block of outward currents com-
pletely removesIK1, as well asIKA, whereas it reducesIK2.
The current INaP is ignored for simplicity. The resulting
model described inf11g reads as follows:

CV8 = − sḡK2mK2
2 sV − EKd + g1sV − E1d

+ ḡNaf„− 150,0.0305,Vd3hNasV − ENad…,

mK28 =
fs− 83,0.018 +VK2

shift,Vd − mK2

tK2
,

FIG. 1. sColor onlined Saddle-node periodic orbitLsn with non-
central homoclinics: the unstable manifoldWu comes back toLsn

crossing transversally the nonleading manifoldWss. The latter sepa-
rates the node regionsfrom the right of Wssd where the periodic
orbit Lsn is stable from the saddle region containing the unstable
manifoldWu comprised of the trajectories converging toLsn as time
tends to −̀ .
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hNa8 =
fs500,0.03391,Vd − hNa

tNa
, s1d

where the variablesV, mK2, andhNa are the membrane po-
tential, activation ofIK2, and inactivation ofINa, respectively.
The parameters are the following:C is the membrane capaci-
tance, ḡK2 is the maximum conductance ofIK2; EK, and
ENa are the reversal potentials of K+ and Na+, respectively;
ḡNa is the maximal conductance ofINa; g1 and E1 are the
conductance and reversal potential of the leak current, re-
spectively;tK2 andtNa are the time constants of activation of
IK2 and inactivation ofINa, respectively;VK2

shift is the shift of
the membrane potential of half-inactivation ofIK2 from its
canonical value; andf is a Boltzman function:fsx,y,zd
=1/s1+exsy+zdd. The values of the parameters used in
this study are C=0.5 nF,ḡK2=30 nS,EK =−0.07 V,
ENa=0.045 V, ḡNa=200 nS,g1=8 nS,E1=−0.046 V,tK2
=0.9 s, andtNa=0.0405 s. We useVK2

shift as a bifurcation pa-
rameter.

One of the features of the models1d is the bistability
where stable tonic spiking coexists with the bursting mode,
as shown in Fig. 2.

III. PHENOMENOLOGICAL DESCRIPTION

In the models1d, the time constant of the activation of the
current IK2 is more than 20 times larger than those of the
membrane potentialV and inactivation of the currentINa.
Hence, we identifymK2 as the slow phase variable andV and
hNa as the fast ones. This allows us to considers1d as a
singularly perturbed system written in the following form:

ẋ = Fsx,zd, ż= mGsx,z,«d, s2d

where xPRnsnù2d and zPR1 are the fast and the slow
phase space variables, respectively,« is a vector of control
parameters, and 0,m!1. Both functions,F and G, are
smooth enough, moreover,G;gsx,«d−z as follows from the
presentation of activation and inactivation variables of ionic
currents according to Hodgkin-Huxley formalism.

Whenm=0, the fast and slow subsystems are decoupled.
Now, the variablez serves as a governing parameter for the
fast subsystem. The functionF is assumed to satisfy some
conditions typical for the systems1d. They are illustrated in
Fig. 3. The first one is that, depending onz, the fast sub-
system has either one or three hyperbolic equilibrium states.

The coordinates of equilibria of the fast system are found
from the equationFsx,zd=0 that defines a nullclineMeq hav-
ing a distinctiveZ-shape in projection onto thesz,xd-plane.
The two turning points onMeq, at zsn

1 andzsn
2 , correspond to

the saddle-node bifurcations in the fast subsystem where a
pair of equilibrium states coalesce. In the intervalzsn

1 ,z
,zsn

2 , the systems2d has three equilibria. The middle seg-

FIG. 2. sColor onlined Coexistence of spiking and bursting
modes in the models1d in the smK2,Vd-projection for VK2

shift=
−0.025 98 V. Initial conditions leading to tonic spiking and bursting
are sV,mK2,hNad=s0.0,0.164,0.08d and s0.0, 0.165, 0.08d, respec-
tively. The small round periodic orbit insad corresponds to the
tonic-spikes shown insbd; the larger, bursting cycle corresponds to
the waveform shown inscd. The topology of bursting is illustrated
in Figs. 3 and 5sdd.

FIG. 3. sColor onlined Bifurcation diagram of the fast subsystem
in the sz,xd-extended phase plane. The curveMeq consists of equi-
librium points of the phase subsystem; its limit cycles span the
surfaceMLC. The curvekxl gives the averagex coordinate of the
limit cycles. The nullclineż=0 crosses the unstable branch ofMeq

at a single point corresponding to an unstable equilibrium state of
the whole system. The arrowed curves outline the start and the end
of a burst. The matching phase space of the neuron systems1d is
presented in Fig. 5sdd.
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ment of Meq is comprised of saddle points. The upper and
lower branches of the nullclineMeq correspond to the depo-
larized and hyperpolarized states of a neuron, respectively.
The hyperpolarizedssolidd branch ofMeq is comprised of
stable equilibria of the fast subsystem. It is supposed that the
stable focus on the upper branch becomes unstable through a
genericscodimension-oned Andronov-Hopf bifurcation when
z passes the critical valuezAH ,zsn

1 . There are the two types
of this bifurcation: sub- and supercritical. In the subcritical
case, the stable focus becomes unstable when a repelling
limit cycle collapses into it. If there are no other equilibrium
states beforezAH, then this unstable cycle may only originate
from a saddle-node bifurcation of limit cycles. This saddle-
node bifurcation also generates a stable limit cycle that sur-
rounds both the equilibrium state and the unstable limit
cycle. In the supercritical case, the stable limit cycle emerges
from the focus asz increases through the bifurcational value
zAH. In either case, the supercritical Andronov-Hopf bifurca-
tion or the saddle-node bifurcation for limit cycles gives rise
to the surfaceMLC

s comprised solely of the stable limit cycles
of the fast subsystem. The subsequent evolution of the stable
limit cycle asz increases further can develop in two different
ways. For example, the branchMLC

s may terminate at a ho-
moclinic bifurcation of the saddle point on the middle branch
of Meq, like in f22,23g, i.e., the stable limit cycle becomes a
homoclinic orbit of the saddle point with the negative saddle
value, which is a sum of the characteristic exponents of the
saddle point of the fast subsystem. Oppositely, if the saddle
value is positive, then another, unstable limit cycle bifurcates
from the homoclinic orbit asz increases throughzh, thereby
constituting the “unstable” surfaceMLC

u . Hence, asz ap-
proaches the valuezsn

lc , the stable and the unstable limit
cycles get closer and merge finally into a double one atzsn

lc .
This value corresponds to a saddle-node bifurcation for

the limit cycles in the fast subsystem. The last scenario
makes the united surfaceMLC=MLC

s øMLC
u look like it is

turned inside outfsee a sketch in Fig. 3 and its numerical
reconstruction in Fig. 5sddg.

After the stable limit cycle has vanished in the saddle-
node bifurcation atz.zsn

lc , a neighboring phase point starts
seeking another attractorfsee Figs. 3 and 5sbdg. Such an at-
tractor is the stable equilibrium state on the lower branch of
Meq. As the parameterz is now decreased, the phase point
follows this hyperpolarized branch towards the low knee
point at zsn

1 . The disappearance of this steady-state attractor
for z,zsn

1 triggers the phase point to switch back to the
stable limit cycle onMLC

s .
Next we discuss the dynamics of the whole, singularly

perturbed systems2d when 0,m!1. Introduce another
nullcline ż=0, which is the surface given byGsx,z,«d=0
ssee Fig. 3d. Let ż be negative onMeq wherever it is below
the nullcline and positive above it. An intersection point of
this nullcline with the nullclineMeq swhereẋ=0d is the equi-
librium state of the whole system. To make the system ex-
hibit bursting behavior, let this equilibrium state be unstable,
i.e., be on the unstablesdottedd branch ofMeq. It follows
from the works by Fenichelf30g that both surfaces,Meq and
MLC, will persist as invariant manifolds for small enoughm
as well. Moreover, each remainsm-close to the original
wherever it is normally hyperbolicse.g., far from bifurca-

tionsd. Therefore, the phase point of the whole system will
follow the same path in thesz,xd-phase space. Namely, it
translates slowly along the lower branch ofMeq leftward
until the fold. Then, it makes a rapid, vertical jump up onto
the surfaceMLC. Afterwards, it moves slowly rightward coil-
ing aroundMLC. Having reached the edge ofMLC at zsn

lc , the
phase point falls straight down ontoMeq to start a new cycle.
Such trajectory behavior is associated with bursting in neu-
ron models. The number of spikes in a burst is a number of
complete revolutions of the phase point aroundMLC.

In the following section we discuss the conditions under
which the system has a stable periodic orbit on the surface
MLC

s that corresponds to tonic spiking. The presence of this
orbit does not let the trajectories of the system, circulating
aroundMLC

s , pass throughout it.

Average nullclines and periodic orbits

The surfaceMLC is composed of the limit cycles of the
fast system atm=0. Let us introduce the average valuekxl of
thex-coordinate of such a limit cyclewst ;zd with periodTszd
at given z: kxszdl=f1/Tszdge0

Tszdwst ;zddt. By varying z, we
define the corresponding continuous curve in thesz,xd space
ssee Fig. 4d. Evidently, it originates at the Andronov-Hopf
bifurcation atzAH and terminates at the homoclinic bifurca-
tion at zh. The curve has a distinctive knee point atzsn

lc cor-
responding to the saddle-node bifurcation of the stable and
unstable limit cycles of the fast subsystem.

In the first approximation, the dynamics of the singularly
perturbed system aroundMLC

s is determined, by following
“averaged” slow subsystem:

FIG. 4. sColor onlined Tangency between the nullclineskżl=0
and kxl makes a saddle-node periodic orbitLsn. Its 2D unstable
manifoldWu scomposed of the segment of the surfaceMLC

s between
zsn

1 andzsn
lc and the hyperpolarized branch ofMeqd comes back to the

bifurcating orbitLsn along the nonleading manifoldWss sgray diskd.
The vertical vectors indicate the points of the fast jumps between
the branches. This sketch is a singularly perturbed analog of Fig. 1.
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ż= mkGsz,«dl ;
m

TszdE0

Tszd

Gswst;zd,z,«ddt. s3d

Hence, ifkGsz,«dl.0 within zsn
1 øzøzsn

lc at some«, then the
surfaceMLC is transitive for solutions of the systems2d that
coil aroundMLC slowly sat the rate of,md translating right-
ward.

Let somez0 betweenzsn
1 and zsn

lc be a simple zero of the
function kG(sz,«d)l for some fixed«. This zero is also an
equilibrium state of this averaged slow subsystem. This equi-
librium state is stable ifkGsz0,«dlz,0, or unstable other-
wise. Then, as follows from Pontryagin-Rodygin theoryf31g,
every zero ofkGl corresponds to a periodic orbit of the
whole singularly perturbed system. The stability of the peri-
odic orbit in the x direction is determined by that of the
corresponding limit cycleMLC of the fast subsystem at the
given z0. Recall that the componentsMLC

s and MLC
u of MLC

are comprised of the stable and unstable limit cycle of the
fast subsystem. Therefore, to study bifurcations of stable pe-
riodic orbits of the singulary perturbed system, we need to
examine the upper branch of the curvekxl corresponding to
the stable componentMLC

s .
Recall too that the functionG is linear in z:Gsx,z,«d

=gsx,«d−z. Define an average nullclinekżl=0 as the para-
metrically given curve

fz= kgszdl, x = kxszdlg

with

kgszdl = f1/TszdgE
0

Tszd

g„wst;zd,«…dt

and kxszdl=f1/Tszdge0
Tszdwst ;zddt. Any of its intersection

points with the curvekxl fcomprised of pairs(z,kxszdl)g cor-
respond to a zeroz0 of kGl, i.e., to a periodic orbit of our
system. Note that ifG is linear in bothx and z, then the
average nullclinekżl=0 and the regular nullclineż=0 are the
same curve. Evidently, this is not the general case. Further-
more, in contrast to the curveż=0, which can be found ana-
lytically, the analysis of the location and the shape of the
average nullclinekżl=0 in the sz,xd space requires numeric
simulations. The corresponding average nullclineskVl and
kmK28 l=0 of the neuron models1d are shown in Figs. 4, 5scd,
and 6 for different values of the bifurcation parameterVK2

shift.
Next let us elaborate on how the average nullclinekżl

=0 may depend on the control parameter« in the slow equa-
tion of the system. Suppose that« be introduced so that the
nullcline kxl=0 crosses the upper, stable branch of the curve
kxl twice for some«.«* . Then, these intersection points
correspond to a pair of periodic orbits, one stable,Ln, and
one, Ls, of the saddle typefsee Figs. 5sad and 5scdg. By
decreasing«, the distance between the orbits decreases, and
when the average nullclinekxl=0 has a tangency with the
curve kxl at some«* , then the system possesses a saddle-
node periodic orbitLsn, which vanishes for«,«* fsee Fig.
5sddg. Additionally, we require thatkGsz0,«*dl«Þ0. If so, the
distance between the bifurcating periodic orbits is evaluated

asÎ«−«* . When«,«* , i.e., there are no periodic orbits on
MLC

s , which becomes transitive, then the neuron exhibits
solely bursting activity.

IV. BISTABILITY AND HOMOCLINIC SADDLE-NODE
BIFURCATION

In order to reveal the origin of bistability, we continue to
draw the parallels between the phenomenological description
of bifurcations in the systems2d and the empirical studies of
the neuron systems1d. We will also discuss a mechanism that
gives rise to the onset of chaos in the system. In both cases
primary roles are played by the homoclinic bifurcations of
the saddle and the saddle-node periodic orbits. Since the lat-
ter is the organizing center of our construction, let us start
with its analysis first.

A spatial saddle-node periodic orbit has two unique mani-
folds, strongly stableWss and unstableWs; in the particular
case ofR3 both are of dimension twof32g. The strongly
stable manifoldWss breaks a vicinity of the saddle-node pe-
riodic orbit Lsn into two regions: node and saddle. In the
node region, the saddle-node periodic orbit is stable, i.e., a
trajectory converges to it as time tends to +`. In contrast,Lsn
is repelling in the saddle region, where it has the unstable
manifold Wu comprised of orbits converging to the saddle-
node in backward time. We are interested in the global be-
havior of this unstable manifold, more specifically, whether it
can be homoclinic, i.e., biasymptotic to the saddle-node pe-
riodic orbit. Recurrent behavior of the solutions of the slow-
fast systems depicted in Fig. 2 supports this assertion.

In this paper, we consider a particular situation where the
unstable manifoldWu of the saddle-node periodic orbit
comes back to the orbit along the strongly stable manifold
Wss of the saddle-node periodic orbitLsn; see the sketch in
Fig. 1.

The case whereWu comes back from the node region
making infinitely many revolutions, the so-called blue-sky
catastrophe, was discovered and analyzed for the neuron sys-
tem s1d in f33g. Note that since an intersection of two sur-
faces in R3 is transverse, the presence of noncentral ho-
moclinic connections to the saddle-node does not raise the
codimension of the bifurcation. This bifurcation was first in-
troduced and studied by Lukyanov and Shilnikovf34,35g.
Let us elaborate on its basic properties. The unfolding of the
bifurcation is sketched in Fig. 6. This bifurcation is best de-
scribed by using a two-dimensional Poincaré map that is
defined on some cross section transverse to the periodic or-
bits. The point where a periodic orbit hits the cross section is
a fixed point of the Poincaré map. If the fixed point is stable,
so is the corresponding periodic orbit. In the case of the
saddle-node periodic orbit, there is a fixed point of the
saddle-node type with a single multiplier equal to +1. So,
when the saddle-node periodic orbitLsn decomposes into the
stable,Ln, and the saddle,Ls, periodic orbits, the correspond-
ing saddle-node fixed point breaks into two points too: one
stable and one fixed point of the saddle type. Let this occur
above the corresponding bifurcation curve SN in Fig. 6. Be-
cause the saddle-node fixed point has noncentral homoclinic
orbits generated by transverse crossings of its unstable and
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FIG. 5. sColord sad Intersection points of the average nullclinekxl=0 with kxl yield one stable,Ln, and one saddle,Ln, periodic orbit of
the singularly perturbed system. The stable manifoldWs of the saddle periodic orbitLs bounds the attraction basin ofLn. This situation
corresponds tosbd and inset 4 in Fig. 6.sbd Intersection points of the nullclineskmK28 l=0 andkVl yield the stable and saddle periodic orbits
of the neuron systems1d. Compare tosad. The waveform of the bursting and tonic activities are shown in Fig. 2.scd The saddle periodic orbit
in sC1d no longer separates the basing of the bursting from the basing of the stable periodic orbit corresponding to the tonic spiking activity
sC2d at VK2

shift=−0.027 V. This type of behavior takes place to the left of the bifurcation curveB2 sinset 2d in Fig. 6. sdd GeometrysD1d and
the waveformsD2d of attracting bursting in the neuron models1d at VK2

shift=−0.027 V. The intersection point of the nullclinesmK28 =0 andMeq

is the unstable equilibrium state ofs1d. The surface ofMLC is composed of the periodic orbits continued as the control parameterVK2
shift is

varied. There is no intersection between the average nullclineskmK28 l=0 and kVl. Accordingly, the trajectory shown coils aroundMLC

translating rightwards and converges to the bursting attractor. Compare with Fig. 3.
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strongly stable manifolds, it follows that after the splitting,
the saddle point inherits the transverse homoclinic structure
too. The presence of transverse homoclinic orbits implies the
existence of Smale horseshoes, the abundance of saddle tra-
jectories, and chaos, which persist even after the saddle-node
disappears below the indicated sector. It is the main feature
of saddle-node bifurcations of this kind.

Here, the stableLn and saddleLs periodic orbits coexist
on the tubeMLC

s . Of special interest here is the right bound-
ary B1 sinset 4 in Fig. 6d. This boundary corresponds to the
first tangency between the stableWs and unstableWu mani-
folds of the saddle periodic orbit. To the right fromB1, the
stable manifoldWs of the saddle orbit bounds the attraction
basin of the stable periodic orbit. This situation corresponds
to the coexistence of tonic spiking and bursting activities in
the neuron, i.e., to bistability. Geometrically, the bistability in
the dynamics of the systems2d takes place when the
zsn

1 -coordinate of the left knee point onMeq is on to the right
from the saddle periodic orbitLs on the surfaceMLC

s fsee Fig.
5sadg.

Let us return to consideration of the behavior of the solu-
tions of the system 2 in the bistability sector between the
bifurcation curvesB1 andB2 in inset 3 of Fig 6.

In our phenomenological description, we assume that the
phase point makes momentarily vertical jumps between the
slow motion surfacesMeq andMLC. In the neuron model, the
appearance of these jumps may vary between projections of
the phase spacescompare for example Figs. 2 and 9d, pre-
senting thesmK2,Vd- andsmK2,−hNad-phase portraits, respec-
tively.

The bistability in the neuron models1d is illustrated in
Fig. 5sbd. Depending on initial condition, the system may
generate tonic spiking, if the initial point is in the attraction
domain of the stable periodic orbit, or it generates bursting
activity. The saddle periodic orbit separates these attraction
domains. The knowledge of the topology of the solutions of
the slow-fast system gives a clear intuition as to how differ-
ent kinds of stimulations may switch operation of the neuron
between the tonic spiking and bursting modes. The influence
of stimulation on the slow variable,mK2, is apparently most
important. For the parameter regime presented in Fig. 5sbd, if

FIG. 6. sColor onlined There are three principal bifurcation
curves in the unfolding for the Lukyanov-Shilnikov bifurcation of a
saddle-node fixed point with noncentral homoclinicssinset 1 show-
ing the Poincaré mapd. The two bifurcation curves,B1 and B2,
which are the boundaries of the darkened sector, correspond to the
very first sinset 4d and lastsinset 2d homoclinic tangencies between
the stable,Ws, and unstable,Wu, sets of the saddle fixed point. The
complex hyperbolic structure existing in this sector is due to trans-
verse homoclinic crossings of these setssinset 3d. This structure will
persist also after the disappearance of the saddle-node point beneath
the segment indicated on the bifurcation curve SN. FIG. 7. sColor onlined Temporal characteristics of bursting en

route to spiking. The burst periodstop chartd increases as
,ulnsVK2

shift+0.260 086 6du. The logarithmic fit of the burst duration
in given in Fig. 8. Interburst intervalsmiddled and frequency of
spikessbottomd remain almost constant.

FIG. 8. sColor onlined Logarithmic fit of the dependence of the
burst duration on the control parameterVK2

shift. Note that the burst
duration obeys the same law because the interburst interval hardly
changes within the indicated parameter interval.

MECHANISM OF BISTABILITY: TONIC SPIKING… PHYSICAL REVIEW E 71, 056214s2005d

056214-7



mK2 is chosen below 0.16, the tonic spiking is observed,
while the bursting occurs for values exceeding a threshold
0.17, provided the same initial values forV andhNa.

When the control parameterVK2
shift is decreased, the stable

and unstable periodic orbits move farther apart, so that the
unstable manifold of the saddle orbit can no longer bound
the attraction basin of the stable orbit where the phase point
tends to as it jumps off the hyperpolarized phase of the burst-
ing, as shown in Fig. 5scd. This situation corresponds to inset
2 in Fig. 6 on the left of the curveB2. Here, the neuron may
only exhibit tonic spiking.

Observe that the duration of bursting phase may grow
with no bound as the control parameter is moved toward the
transition value between the regimes, while the interburst
interval remains nearly constantssee Figs. 7 and 8d. The
estimate for the growth of the burst period is given by
Tsz,a*dulnsa−a*du, wherea* is a deviation of a control pa-
rameter from the boundaryB1 into the bursting region, and
Tsz,a*d is the period of the limit cycle on the surfaceMLC of
the fast subsystem at the givenz. Note also that the bursting
behavior is not necessarily regular here but can be chaotic as
well, especially when the phase point may pass close by the
stable periodic orbitssee Fig. 10d.

On the left of the boundaryB2, the bistability ends so that
the tonic spiking becomes the dominant regime. For the
models2d, this situation occurs when the left knee point atzsn

1

turns out to be to the left of the saddle periodic orbitLs on
MLC

s . Any trajectory starting on the right of the stable mani-

fold Ws of the saddle periodic orbit will get attracted to the
stable one right after a single cycle of burstingssee inset 2 in
Fig. 6d. The corresponding phase space portrait of the neuron
systems1d is shown in Fig. 5scd.

The intermittency in the system takes place between the
boundariesB1 andB2 ssee Inset 3 in Fig. 6d. Here, the system
may generate a train of bursting before it starts firing con-
tinuous spikes. The exact number of bursts and duration of
each burst in the train are impossible to predict. This is an-
other consequence of the complex shift dynamics due to ho-
moclinic wiggles pictured in Fig. 6sinset 3d. Figure 10
shows a chaotic train composed of four bursts. The width of
the parameter interval corresponding to the intermittency is
small in a singularly perturbed system withumu!1. Further-
more, it is proportional to the diameter of the tube of the
unstable manifoldWu, which is shrinking while it gets back
to the saddle-node periodic orbitssee the sketch in Fig. 1d.
Recall that the low hyperpolarized branch ofMeq is com-
prised of the stable equilibria of the fast subsystem. In virtue
of Liouville’s theorem, a low estimate for volume compres-
sion can be given byesdiv F+mdt, with t.szsn

lc −zsn
1 d /m and

div F,0 on the low branch of Meq. So, if m is small, so is
the diameter of the tube of the unstable manifoldWu and,
hence, is the size of the intermittency interval in the param-
eter space. This makes this kind of intermittency transition
hard to find in a singular perturbed system. On the other
hand, its presence can serve as indirect evidence that the
system does not run on multiple time scales.

FIG. 9. sColor onlined Intermittent transition to tonic spiking. A
number of bursts are generated before the stable periodic orbit cap-
tures the phase point as illustrated in a projection to thes
−hNa,mK2d-phase planesad and as a voltage-time seriessbd. The
model s1d is at control parameterVK2

shift=0.033 67 V. This intermit-
tency corresponds to regions3d in Fig. 6.

FIG. 10. sColor onlined Chaotic bursting at VK2
shift

=0.033 670 9 V presented in a projection on thes−hNa,mK2d plane
sad and as a voltage-time seriessbd. Adjusting VK2

shift regularizes
bursting as shown in Fig. 2.
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V. CONCLUSION

We propose a new general scenario of transition between
tonic spiking and bursting. This mechanism also explains
bistability in the system, where the bursting mode coexists
with tonic spiking so that either mode can be attained by an
appropriate choice of initial conditions. The core of the
mechanism is based on a bifurcation of codimension one for
a saddle-node periodic orbit with noncentral homoclinic or-
bits.

We identified this scenario in a leech neuron models1d.
For the first time this bifurcation has been shown to occur in
an autonomous model describing the dynamics of a physical
entity. We argue that it is typical for slow-fast systems based
on the Hodgkin-Huxley formalism. Moreover, we developed
a geometrical framework for an averaging method of singu-
larly perturbed systems. It constitutes a powerful tool for
effective detection and bifurcation analysis of periodic orbits
in neuron models.

Our description is not restricted to the given three-
dimensional neuron model and holds for higher dimensions
as well. Since the key bifurcation of the scenario is of codi-
mension one, it may be revealed in electrophysiological ex-
periments. The signatures of the key bifurcation ares1d co-
existence of tonic spiking and bursting;s2d smooth transition
between the two regimes;s3d logarithmic growth of the burst
durationen routetoward tonic spiking; ands4d chaotic inter-
mittency of transient bursting turning into tonic spiking.
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