
“There is nothing more practical than a good theory.”
James C. Maxwell

“. . . le souci du beau nous conduit aux mêmes choix que celui de l’utile.”
Henri Poincaré



Preface

Many phenomena in science and technology are dynamical in nature. Sta-
tionary regimes, periodic motions and beats from modulations have long been
believed to be the only possible observable states. However, discoveries in the
second half of the 20th century have dramatically changed our traditional view
of the character of dynamical processes. The breakthrough came with the dis-
covery of a new type of oscillations called dynamical chaos. A deepening of our
understanding of dynamical phenomena has since led us to a clear recognition
that ours is a nonlinear world. This has resulted in the emergence of nonlin-
ear dynamics as a scientific discipline whose aim is to study the common laws
(regularities) of nonlinear dynamical processes.

A typical scheme for investigating a new phenomenon usually proceeds as
follow: the relevant experiment or observation is studied by first construct-
ing an adequate mathematical model in the form of dynamical equations.
This model is analyzed and the result is compared with the experimental
phenomenon.

This approach was first suggested by Newton. The laws that Newton dis-
covered have provided a foundation for the mathematical modeling of numerous
problems, including Celestial mechanics. The solution of the restricted two-
body problem gives a brilliant explanation of the experimental Kepler’s laws.
In fact, starting with Newton, this method for modeling nature has dominated
the field for many years. However, even such a purely scientific approach
must be validated by questioning the correspondence between a real phe-
nomenon and its phenomenological model, which had been aptly put by Bril-
louin: “A mathematical model differs from reality just as a globe differs from
the earth”.
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A mathematical model in nonlinear dynamics usually consists of a sys-
tem of equations with analytically given nonlinearities, and a finite number
of parameters. The system may be described by ordinary differential equa-
tions, partial differential equations, equations with a delay, integro-differential
equations, etc. In this book we will deal only with lumped (discrete-space)
systems described by ordinary differential equations. Furthermore, we will re-
strict ourselves to a study of non-conservative systems thereby leaving aside the
“ideal” dynamics of Hamiltonian systems (which Klein, at the end of the 19th
century, had characterized as being the most “attractive mechanics without
friction”).

A system of differential equations is written in the form

dx

dt
= X(x) ,

where the independent variable t is called the time. One of the postulates of
nonlinear dynamics which dates back to Aristotle and is based on common
sense is that all observable states must be stable. This implies that in any
comprehensive study of systems of differential equations, our attention must
be focused on the character of the solutions over an infinite time interval. The
systems considered from this point of view are called dynamical. Although
the notion of a dynamical system is a mathematical abstraction — indeed
we know from cosmology that even our Universe has only a finite life time
— nevertheless, many phenomena of the real world have been successfully
explained via the theory of dynamical systems. In the language of this theory
the mathematical image of a stationary state is an equilibrium state, that of
self-oscillations is a limit cycle, that of modulation is an invariant torus with
a quasi-periodic trajectory, and the image of dynamical chaos is a strange
attractor; namely, an attracting limit set composed of unstable trajectories.

In principle, the first three types of motions cited may be explained by a
linear theory. That was the approach of the 19th century, which concerned
mainly various practical applications modeled in terms of linear ordinary or
partial differential equations. The most famous example is the problem of
controlling steam engines whose investigation had led to the solution of the
problem of stability of equilibrium states; namely to the classic Routh–Hurwitz
criterion.

The most remarkable events in nonlinear dynamics can be traced to the
twenties and the thirties of the 20th century. This period is characterized
by the rapid development of radio-engineering. A common feature of many
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nonlinear radio-engineering problems is that the associated transient processes
are typically very fast, thereby making it less time-consuming to carry out
complicated experiments. The fact that the associated mathematical models
in those days are usually simple systems of quasi-linear equations also plays an
important role. This has in turn allowed researchers to conduct rather complete
investigations of the models using methods based on Poincaré’s theory of limit
cycles and Lyapunov’s stability theory.

Another significant event from that period is the creation of a mathemati-
cal theory of oscillations in two-dimensional systems. In particular, Andronov
and Pontryagin identified a large class of rough (structurally stable) systems
which admit a rather simple mathematical description. Moreover, all prin-
cipal bifurcations of limit cycles were studied (Andronov, Leontovich) and
complete topological invariants for both rough systems (Andronov, Pontrya-
gin) and generic systems (Leontovich, Mayer) were described. Shortly after
that, specialists from various areas of research applied these mathematically
transparent and geometrically comprehensive methods to investigate concrete
two-dimensional systems. This stage of the development is documented in the
classic treatise “Theory of oscillations” by Andronov, Vitt and Khaikin.1

Further development in this subject included the attempt at a straight-
forward generalization of the concepts of planar systems, namely, the aim of
extending the conditions of structural stability and bifurcations to the high-
dimensional case. In no way does this approach indicate narrow visions. On
the contrary, this was a mathematically sound strategy. Indeed, it was un-
derstood that entrance into space must bring new types of motions which
may become crucial in nonlinear dynamics. As was mentioned previously, the
mathematical image of modulation is a torus with quasi-periodic trajectories.
Quasi-periodic trajectories are a particular case of almost-periodic trajectories
which, by definition, are unclosed trajectories whose main feature is that they
have almost-periods — the time intervals over which the trajectory returns
close to its initial state. The quasi- and almost-periodic trajectories are self-
limiting. A broader class of self-limiting trajectories consists of Poisson-stable
trajectories. This kind of trajectory was discovered by Poincaré while studying
the stability of the restricted three-body problem. A Poisson-stable trajectory
also returns arbitrarily close to its initial state, but for an arbitrary but fixed
small neighborhood of the initial state, the sequence of the associated return

1This book was first published in 1937 but without the name of Vitt, who had already
been repressed.
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times may be unbounded, i.e. the motion is unpredictable. In accordance with
Birkhoff’s classification, stationary, periodic, quasi-periodic, almost-periodic
and Poisson-stable trajectories exhaust all types of motions associated with
non-transient behaviors.

In the early thirties Andronov posed the following basic question in connec-
tion with the mathematical theory of oscillations: Can a Poisson-stable trajec-
tory be Lyapunov stable? The answer was given by Markov: If a Poisson-stable
trajectory is stable in the sense of Lyapunov (to be more precise, uniformly
stable), then it must be almost-periodic. It seemed therefore that no other mo-
tions, apart from those which are almost-periodic, exist in nonlinear dynamics.
Therefore, despite new discoveries in the qualitative theory of high-dimensional
systems in the sixties it was not clear whether this theory had any value beyond
pure mathematics. But this did not last long.

For within a relatively short period of time Smale had established the foun-
dation for a theory of structurally stable systems with complex behavior in the
trajectories, a theory that is generally referred to nowadays as the hyperbolic
theory. In essence, a new mathematical discipline with its own terminology,
notions and problems has been created. Its achievements have led to one of
the most amazing fundamental discoveries of the 20th century — dynamical
chaos.2 Hyperbolic theory had provided examples of strange attractors which
might be the mathematical image of chaotic oscillations, such as the well-known
turbulent flows in hydrodynamics.

Nevertheless, the significance of strange attractors in nonlinear dynamics
were not widely appreciated, especially not by specialists in turbulence. There
were a few reasons for their reluctance. By mathematical construction, known
hyperbolic attractors possess such a complex topologically structure that it
did not allow one to conceive of any reasonable scenarios for their emergence.
This has led one to regard hyperbolic attractors as being the result of a pure
abstract scheme irrelevant to real dynamical processes.3 Moreover, the phe-
nomenon of chaos which has been observed in many concrete models could
scarcely be associated with hyperbolic attractors because of the appearance of
stable periodic orbits of long periods, either for the given parameter values, or
for nearby ones. This enabled skeptics to argue that any observable chaotic

2Chronologically, this discovery came after the creation of “relativity theory” and “quan-
tum mechanics”.

3The possibility of applying hyperbolic attractors to nonlinear dynamics remains prob-
lematic even today.
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behavior represents a transient process only. In this regard, we must empha-
size that the persistence of the unstable behavior of trajectories of a strange
attractor with respect to sufficiently small changes in control parameters is the
essence of the problem: In order for a phenomenon to be observable it must
be stable with respect to external perturbations.

The breakthrough in this controversy came in the mid seventies with the
appearance of a simple low-order model

ẋ = −σ(x− y) ,

ẏ = rx− y − xz ,

ż = −bz + xy ,

where chaotic behavior in its solutions was discovered numerically by E. Lorenz
in 1962. A detailed analysis carried out by mathematicians revealed the exis-
tence of a strange attractor which is not hyperbolic but structurally unstable.
Nevertheless, the main feature persisted, namely, the attractor preserved the
instability behavior of the trajectories under small smooth perturbations of
the system. Such attractors, which contain a single equilibrium state of the
saddle type, are called Lorenz attractors. The second remarkable fact related
to these attractors is that the Lorenz attractor may be generated via a fi-
nite number of easily observable bifurcations from systems endowed with only
trivial dynamics.

Since then, dynamical chaos has been almost universally accepted as a le-
gitimate and fundamental phenomenon of nature. The Lorenz model has since
become a de facto proof of the existence of chaos, even though the model itself,
despite its hydrodynamical origin, contains “too little water”.4 More recently,
a much more realistic mathematical model of a real physical system called
Chua’s Circuit has also been proved rigorously to exhibit dynamical chaos,
and whose experimental results agree remarkably well with both mathemati-
cal analysis and computer simulations [76–79].

We will not discuss further the relevance of the theory of strange attractors
but note only that the theory of nonlinear oscillations created in the thirties
had been so clear and understandable that generations of nonlinear researchers
were able to apply it successfully to solve problems from many scientific dis-
ciplines. A different situation occurred in the seventies. Limit cycles and tori

4The Lorenz system represents the simplest Galerkin approximation of the problem of
the convection of a planar layer of fluid.
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which exhibit a unified character were replaced by strange attractors which
possess a much more complex mathematical structure. They include smooth
or non-smooth surfaces and manifolds, sets with a local structure represented
as a direct product of an interval and a Cantor set, or even more sophisticated
sets. Today, a specialist in complex nonlinear dynamics must either have a
strong mathematical background in the qualitative theory of high-dimensional
dynamical systems, or at least a sufficiently deep understanding of its main
statements and results. We wish to remark that just as nonlinear equations
cannot usually be integrated by quadratures, the majority of concrete dynam-
ical models do not admit “a qualitative integration” by a purely mathematical
analysis. This inevitably leads to the use of computer analysis as well. Hence,
an ultimate requirement for any formal statement in the qualitative theory
of differential equations is that it must have a complete and concrete char-
acter. It must also be free of unnecessary restrictions which, paraphrasing
Hadamard, are not dictated by the needs of science but by the abilities of the
human mind.

In most cases, the parameter space of a high-dimensional model may be
partitioned into two regions according to whether the model exhibits simple
or complex behaviors in its trajectories. The primary indication or sign of the
presence of complex behavior will be associated in this book with the presence
of a Poincaré homoclinic trajectory. Although Poincaré had discovered these
trajectories in the restricted three-body problem, i.e. in a Hamiltonian system,
such trajectories are essential objects of study in all fields of nonlinear dynamics
as well. In general, the presence of Poincaré homoclinic trajectories leads
to rather important conclusions. It was simultaneously established by Smale
and L. Shilnikov (from opposite locations on the globe) that systems with
a Poincaré homoclinic trajectory possess infinitely many co-existing periodic
trajectories and a continuum of Poisson-stable trajectories. All of them are
unstable. In essence, these homoclinic structures are the elementary bricks of
dynamical chaos.

As for high-dimensional systems with simple behavior of trajectories, they
are quite similar to planar systems [80]. In principle, the only new feature is
the possibility of the existence in the phase space of an invariant torus with a
quasi-periodic trajectory covering the torus. So, any concrete model may be
completely analyzed in this region of the parameter space.

The situation is fundamentally different in the case of systems with complex
trajectory behavior. Indeed, it has been established recently by Gonchenko,
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L. Shilnikov and Turaev that a complete analysis of most models of nonlinear
dynamics is unrealistic [28].

This book is concerned only with the qualitative theory of high-dimensional
systems of differential equation with simple dynamics. For an extremely rich
variety of such systems which arise in practical applications, the reader is
referred to the very large systems of nonlinear differential equations (typically
with dimensions greater than 10,000 state variables) associated with Cellular
Neural Networks [81], which include lattice dynamical systems and cellular
automata as special cases. We have partitioned this book into two parts. The
first part is mainly introductory and technical in nature. In it we consider
the behavior of trajectories close to simple equilibrium states and periodic
trajectories, as well as discuss some problems related to the existence of an
invariant torus. It is quite natural that we first present the classical results
concerning the stability problem. Of special concern are the unstable equilibria
and periodic trajectories of the saddle type. Such trajectories play a crucial role
in the contemporary qualitative theory. For example, saddle equilibrium states
may form unseparated parts of strange attractors. Saddles are also related
to some principally important problems of a nonlocal character, etc. Our
technique for investigating the behavior of systems near saddle trajectories in
this book is based on the method suggested by L. Shilnikov in the sixties. The
main feature of this method is that the solution near a saddle is sought not as
a solution of the Cauchy problem but as a solution of a special boundary-value
problem. Since this method has not yet been clearly presented in the literature,
but is known only to a small circle of specialists, it is discussed in detail in
this book.

In the second part of this book we analyze the principal bifurcations of
equilibrium states, as well as of periodic, homoclinic and heteroclinic trajec-
tories. The theory of bifurcations has a key role in nonlinear dynamics. Its
roots go back to the pioneering works of Poincaré and Lyapunov on the study
of the form of a rotating fluid. A bifurcation theory based on the notion of
roughness, or structural stability, has since been developed. Whereas in the
rough (robust) case small changes do not induce significant changes in the
states of a system, the bifurcation theory explains what happens in the non-
rough case, including many possible qualitative transformations. Some of these
transitions may be dangerous, possibly leading to catastrophic and irreversible
situations. The bifurcation theory allows one to predict many real-world phe-
nomena. In particular, notions such as the soft and the rigid (severe) regimes of
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excitation of oscillations, the safe and dangerous boundaries of the stability
regions of steady states and periodic motions, hysteresis, phase-locking, etc.,
have all been formulated and analyzed via bifurcation theory.

In this book we give special attention to the boundaries of stability of equi-
libria and periodic trajectories in the parameter space. Along with standard
bifurcations, both local and global, we also examine a bifurcation phenomenon
discovered recently by L. Shilnikov and Turaev [66], the so-called “blue sky
catastrophe”. The essence of this phenomenon is that in the parameter space
there may exist stability boundaries of a periodic trajectory such that upon
approaching the boundary both the length and the period of the periodic tra-
jectory tend to infinity, whereas the periodic orbit resides at a finite distance
from any equilibrium state in a bounded region of the phase space. This bi-
furcation has not yet been observed in models of physical systems, although a
three-dimensional two-parameter model with a polynomial right-hand side is
known [25].

This book is essentially self-contained. All necessary facts are supplied
with complete proofs except for some well-known classical results such as the
Poincaré–Denjoy theory on the behavior of trajectories on an invariant torus.

The basis of this book is a special course in which the first author gave at
the Nizhny Novgorod (formerly, Gorky) University over the last thirty years.
This course usually proceeds with a one-year lecture on the qualitative theory
of two-dimensional systems, which was delivered by Prof. E. A. Leontovich-
Andronova for many years. Besides that, discussions on certain aspects of
this course had formed the subject of student seminars, and weekly scientific
seminars at the Department of Differential Equations of the Institute for Ap-
plied Mathematics & Cybernetics. This book will appeal to beginners who
have chosen the qualitative theory and the theory of bifurcations and strange
attractors as their majors. Undoubtedly, this book will also be useful for spe-
cialists in the above subjects and in related mathematical disciplines, as well
as for a broad audience of interdisciplinary researchers on nonlinear dynamics
and chaos, who are interested in the analysis of concrete dynamical systems.

Part I of this book consists of six chapters and two appendices.
In Chap. 1 we describe the principal properties of an autonomous sys-

tem, give the notion of an abstract dynamical system and select the princi-
pal types of trajectories and invariant sets necessary for further presentation.
In addition, we discuss some problems of qualitative integration of differen-
tial equations which is based on the notion of topological equivalence. The
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material of this chapter also has reference value, beginners may call on it
when needed.

In Chap. 2 we examine the behavior of trajectories in a neighborhood of a
structurally-stable equilibrium state. Our approach here goes back to Poincaré.
Using this approach we classify the main types of equilibrium states. Special
attention is given to equilibria of the saddle types, and, in particular, to leading
and nonleading (strongly stable) invariant manifolds. We also give sufficient
attention to the asymptotic representation of solutions near a saddle point. As
mentioned, our methods are based on Shilnikov’s boundary-value problem. In
addition, we prove some theorems on invariant manifolds. We would like to
stress that along with well-known theorems on stable and unstable manifolds
of a saddle, some rather important results which we will need later are given
here. In the last section of the chapter some useful information concerning
Poincare’s theory of resonances for local bifurcation problems are presented.

In Chap. 3 we discuss structurally-stable periodic trajectories. Our con-
sideration is focused on the behavior of trajectories of the Poincaré map in a
neighborhood of the fixed point. As in the case of equilibria we investigate an
associated boundary-value problem near a saddle fixed point and prove a the-
orem on the existence of its invariant manifolds. Sections 3.10–3.12 and 3.14
are concerned only with the properties of periodic trajectories in continuous
time.

Invariant tori are considered in Chap. 4. More specifically, we study a non-
autonomous system which depends periodically, as well as quasi-periodically,
on time. This class of non-autonomous system can be extended to higher
dimensions by adding some equations having a specific form with respect to
cyclic variables. To prove the existence of an invariant torus in such a system,
we use a universal criterion, the so-called annulus principle which is applicable
for systems with small perturbations. In the case of a periodic external force,
the behavior of the trajectories on a two-dimensional invariant torus may be
modeled by an orientable diffeomorphism of a circle. In relation to this we
present a brief review of some related results from the Poincaré–Denjoy the-
ory. We complete this chapter with a discussion of an important problem of
nonlinear dynamics, namely, the synchronization problem associated with the
phenomenon of “beats” in modulations.

The final two chapters, Chap. 5 and 6, are dedicated to local and global
center manifolds, respectively. We re-prove in Chap. 5 a well-known result
that in a small neighborhood of a structurally unstable equilibrium state, or
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near a bifurcating periodic trajectory of a Cr-smooth dynamical system, there
exists locally an invariant Cr-smooth center manifold whose dimension is equal
to the number of characteristic exponents with a zero real part in the case of
equilibrium states, or to the number of multipliers lying on a unit circle in
the case of periodic trajectories. Our proof of the center manifold theorem
relates it to the study of a specific boundary value problem and covers all
basic local invariant manifolds (strongly stable and unstable, extended stable
and unstable, and strongly stable and unstable invariant foliations). We discuss
how the existence of the center manifold and the invariant foliation allows one
to reduce the problem of investigating the local bifurcations of a system to that
of a corresponding sub-system on the center manifold, thereby significantly
decreasing the dimension of the problem.

In Chap. 6 the proof of the analog of the theorem on the center manifold
for the case of global bifurcations is presented. Unlike the local case, the di-
mension of the non-local center manifold does not depend on the degree of
degeneracy of the Jacobian matrix, but is equal to some integer which can
be estimated in terms of the numbers of negative and positive characteris-
tic exponents of saddle trajectories comprising a heteroclinic cycle. Another
characteristic of the non-local center manifold is that it is only C1-smooth in
general. The restriction on such center manifolds may only be used for study-
ing those bifurcation problems which admit the solution within the framework
of C1-smoothness. Therefore, in contrast to the local bifurcation theory, one
cannot directly apply non-local center manifolds to study various delicate bi-
furcation phenomena which require more smoothness. Hence, the theorem
contains, in essence, certain qualitative results which only allow us to antici-
pate some possible dynamics of the trajectories in a small neighborhood of a
homoclinic cycle, as well as to estimate the dimensions of the stable and un-
stable manifolds of trajectories lying in its neighborhood, and, consequently,
to evaluate the number of positive and negative Lyapunov exponents of these
trajectories. We consider in detail only the class of systems possessing the
simplest cycle; namely, a bi-asymptotic trajectory (a homoclinic loop) which
begins and ends at the same saddle equilibrium state. We then extend this
result to general heteroclinic cycles.

In the Appendix we prove a theorem on the reduction of a system to a
special form which is quite suitable for analysis of the trajectories near a sad-
dle point. This theorem is especially important because an often postulated
assumption on a straight-forward linearization of the system near a saddle may
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sometimes lead to subsequent confusion when more subtle details of the be-
havior of the trajectories are desired. The essence of our proof is a technique
(based on the reduction of the problem to a theorem on strong stable invariant
manifold) for making a series of coordinate transformations which are robust
to small, smooth perturbations of the system. We will use this special form in
the second part of this book when we study homoclinic bifurcations.
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