
INTRODUCTION TO PART II

In the following chapters we present the theory of bifurcations of dynamical
systems with simple dynamics. It is difficult to over-emphasize the role of bi-
furcation theory in nonlinear dynamics the reason is quite simple: the methods
of the theory of bifurcations comprise a working tool kit for the study of dy-
namical models. Besides, bifurcation theory provides a universal language to
communicate and exchange ideas for researchers from different scientific fields,
and to understand each other in interdisciplinary discussions.

Bifurcation theory studies the changes in the phase space as we vary the pa-
rameters of the system. In essence, this is the authentic notion of bifurcation
theory proposed originally by Henry Poincaré when he studied Hamiltonian
systems with one degree of freedom. We must, however, note that this in-
tuitively evident definition is not always sufficient at the contemporary stage
of the development of the theory. One needs, in fact, to have an appropriate
mathematical foundation to define the notions of the structure of the phase
space and the changes in the structure.

The first attempt at creating such formalization had been made by An-
dronov and Pontryagin in 1937: they introduced the notion of a rough system.
For a system to be rough, it means that any sufficiently close system is to be
topologically equivalent to the given one. Moreover, the conjugating homeo-
morphism must be close to identity. In other words, the two systems must
have matching phase portraits and corresponding trajectories can differ only
slightly.

In the same paper, Andronov and Pontryagin had presented the necessary
and sufficient conditions of roughness for systems on the plane. Consequently,
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many problems of nonlinear dynamics that can be modeled by two-dimensional
dynamical systems has since attained a necessary mathematical foundation.

The main statements of the Andronov and Pontryagin theory are presented
in the first section of Chap. 7, which opens Part II of this book. We also give
the definition of structural stability (due to Peixoto) there. The difference
between the notion of structural stability and that of roughness is that, the
conjugating diffeomorphism defining the structural stability is not assumed to
be close to identity in the former case. This is rather convenient from a purely
mathematical point of view as it follows immediately from the definition that
structurally stable systems form an open set. Even though numerous known
proofs had only concentrated on structural stability, roughness itself follows
from the same proofs as a by-product. Hence, the difference of these two
notions does not seem to be that essential. Note, nonetheless, that the notion
of structural stability has become much more widely known outside of Russia,
especially in the West. In this book we will frequently utilize this term as
well. In spite of that, we believe that the notion of roughness is, in principle,
more reasonable as it gives the natural image of small changes of real processes
caused by small variations of parameters.

The multi-dimensional extension of two-dimensional rough systems is the
Morse–Smale systems discussed in Sec. 7.4. The list of limit sets of such a
system includes equilibrium states and periodic orbits only; furthermore, such
systems may only have a finite number of them. Morse–Smale systems do
not admit homoclinic trajectories. Homoclinic loops to equilibrium states may
not exist here because they are non-rough — the intersection of the stable
and unstable invariant manifolds of an equilibrium state along a homoclinic
loop cannot be transverse. Rough Poincaré homoclinic orbits (homoclinics
to periodic orbits) may not exist either because they imply the existence of
infinitely many periodic orbits. The Morse–Smale systems have properties
similar to two-dimensional ones, and it was presumed (before and in the early
sixties) that they are dense in the space of all smooth dynamical systems. The
discovery of dynamical chaos destroyed this idealistic picture.

The fundamental question of “what distinguishes systems with simple dy-
namics from systems with chaotic dynamics?” can only be answered if we can
correspond certain types of trajectories to physically observable processes. We
began the classification with the study of quasiperiodic trajectories (Chap. 4 in
the first part of this book). Even though these trajectories are non-rough, they
were shown to model adequately such phenomena as beats and modulations.
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Quasiperiodic trajectories are a special case of Poisson-stable trajectories.
The latter plays one of the leading roles in the theory of dynamical systems
as they form a large class of center motions in the sense of Birkhoff (Sec. 7.2).
Birkhoff had partitioned the Poisson-stable trajectories into a number of sub-
classes. This classification is schematically presented in Sec. 7.3. Having chosen
this scheme as his base, as early as in the thirties, Andronov had undertaken
an attempt to collect and correlate all known types of dynamical motions with
those observable from physical experiments. Since his arguments were based
on the notion of stability in the sense of Lyapunov for an individual trajectory,
Andronov had soon come to the conclusion that all possible Lyapunov-stable
trajectories are exhausted by equilibrium states, periodic orbits and almost-
periodic trajectories (these are quasiperiodic and limit-quasiperiodic motions
in the finite-dimensional case).

Thus, it appeared naturally to assume that every interesting dynamical
regime possesses a discrete frequency spectrum. In this connection, it is
curious to note that Landau and Hopf had proposed quasiperiodic motions
with a sufficiently large number of independent frequencies as the mathema-
tical image of hydrodynamical turbulence (the number of the frequencies was
supposed to increase to infinity as some structural parameter, such as the
Reynolds number, increases).

All other Poisson-stable trajectories are unstable in the sense of Lyapunov.
How can such trajectories be of any use in dynamics? The answer was found
nearly 30 years later. For the first time, the significance of a stable limit set
consisting of individually unstable trajectories for explaining the complex and
chaotic behavior of nonlinear dynamical processes was recognized by Lorenz
in 1963 [87].

In the rough case an analysis of the structure of such a limit set (called
a quasiminimal set, which is defined as the closure of an unclosed Poisson-
stable trajectory) may be performed using Pugh’s closing lemma. The main
conclusion that follows from this analysis (see Sec. 7.3) is that periodic orbits
are dense in a rough quasiminimal set. In particular, we will see that the
number of periodic orbits is infinite. Systems possessing such limit sets are
called systems with complex dynamics.

A more vivid characteristics of systems with complex behaviors is the
presence of a Poincaré homoclinic trajectory, i.e. a trajectory which is
biasymptotic to a saddle periodic orbit as t→ ±∞. The existence of a homo-
clinic orbit which lies at the transverse intersection of the stable and unstable
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invariant manifolds of the saddle periodic orbit implies the existence of in-
finitely many other saddle periodic orbits in the phase space (Sec. 7.5).

However, rough systems (both types — with simple and complex dynamics)
with dimension (of the phase space) greater than two are not dense in the space
of dynamical systems. In fact, it turns out that a key role must have been given
to non-rough attracting limit sets with unstable behaviors in their trajectories.

An example of such a set is the Lorenz attractor which occurs in a variety
of models. The wild spiral attractor [153] is another fascinating example.1

The similarity between both strange attractors is that none contains stable
periodic orbits. The difference between them is that all Poincaré homoclinic
orbits in the Lorenz attractor are rough, whereas the featuring property of the
wild attractor is the coexistence of rough and non-rough Poincaré homoclinic
orbits due to homoclinic tangencies. The similarity is that both attractors
are “concentrated” on a rough equilibria state which is a saddle in the case
of the Lorenz attractor, and a saddle-focus in the case of the wild attractor.
Among other features of models with such strange attractors, we may single
out the existence of regions in the parameter space where the parameter values
corresponding to homoclinic loops to the equilibrium state are dense.

A complete understanding of such complex phenomena is impossible
without a thorough knowledge of basic bifurcations, both local and global.
General aspects of this theory are reviewed in Chap. 8. We begin the analysis
with the simplest non-rough systems in the two-dimensional case, following
the pioneering works by Andronov and Leontovich. They carried out a
systematic classification of all principal bifurcations of limit cycles on the plane
of which there are four sub-types: namely, the birth of a limit cycle from:

(1) a simple weak focus;
(2) a simple semistable limit cycle;
(3) a separatrix loop to a simple saddle-node; and
(4) a separatrix loop to a saddle at which the divergence of the vector field

is non-zero.

The Andronov–Leontovich classification employs an additional notion of
the so-called degree of non-roughness. A further development of the theory

1The spiral-like shape of this attractor follows from the shape of homoclinic loops to a
saddle-focus (2, 1) which appear to form its skeleton. Its wildness is due to the simultaneous
existence of saddle periodic orbits of different topological type and both rough and non-rough
Poincaré homoclinic orbits.
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had taken yet another direction, namely by selecting bifurcation sets of
codimension one for primary bifurcations, and of arbitrary (though finite)
codimension in the general case. Moreover, even though all two-dimensional
flows on a connected component of a bifurcation surface of a given finite
codimension are all topologically equivalent (Leontovich–Mayer theorem), this
is no longer true in the multi-dimensional case.

This result is due to Palis, who had found that two-dimensional diffeomor-
phisms with a heteroclinic orbit at whose points an unstable manifold of one
saddle fixed point has a quadratic tangency with a stable manifold of another
saddle fixed point can be topologically conjugated locally only if the values
of some continuous invariants coincide. These continuous invariants are called
moduli. Some other non-rough examples where moduli of topological conju-
gacy arise are presented in Sec. 8.3.

Surprisingly, even non-rough systems of codimension one may have in-
finitely many moduli. Of course, since the models of nonlinear dynamics are
explicitly defined dynamical systems with a finite set of parameters, this cre-
ates a new obstacle which the classical bifurcation theory has not run into.
Although the case of homoclinic loops of codimension one does not introduce
any principal problem, nevertheless codimensions two and higher are much less
trivial as, for example, in the case of a homoclinic or heteroclinic cycle includ-
ing a saddle-focus where the structure of the bifurcation diagrams is directly
determined by the specific values of the corresponding moduli.

Therefore, Andronov’s approach (Sec. 8.4) for studying dynamical mod-
els has to be corrected in cases where a complete bifurcation analysis may
not be possible without moduli. We note, however, that if some fine delicate
phenomena may be ignored, or if the problem is restricted to the analysis of
non-wandering orbits like equilibrium states, periodic and quasiperiodic mo-
tions, a study of the main bifurcations in systems with simple dynamics still
remains realistic within the framework of finite-parameter families under cer-
tain reasonable requirements (Sec. 8.4).

We note parenthetically that the situation becomes drastically different
for the systems with complex dynamics. In the majority of cases (at least
in those cases where homoclinic tangencies appear) the introduction of the
moduli is inexorable because they serve as the essential parameters governing
the bifurcations (see [63]).

Although the theory of the typical bifurcations of limit cycles in
two-dimensional systems was created by Andronov and Leontovich in the
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thirties,2 a systematic development of the bifurcation theory of periodic orbits
and equilibrium states in multi-dimensional systems was initiated only after
their results became available to the scientific community (the work of Hopf in
1942 was, perhaps, the only exception).

A straightforward generalization of two-dimensional bifurcations was deve-
loped soon after. So were some natural modifications such as, for instance, the
bifurcation of a two-dimensional invariant torus from a periodic orbit. Also it
became evident that the bifurcation of a homoclinic loop in high-dimensional
space does not always lead to the birth of only a periodic orbit. A question
which remained open for a long time was: could there be other codimension-
one bifurcations of periodic orbits? Only one new bifurcation has so far been
discovered recently in connection with the so-called “blue-sky catastrophe” as
found in [152]. All these high-dimensional bifurcations are presented in detail
in Part II of this book.

In Chaps. 9 and 10 we consider structurally unstable equilibrium states and
periodic orbits. The bifurcations of these limit sets are studied in Chap. 11.
These three chapters belong to a theory of local bifurcations. The results
with local bifurcations are well presented in the literature and this theory
continues to develop rapidly. We therefore restrict ourselves here to a detailed
study of the basic cases. First of all, for a bifurcating equilibrium state whose
characteristic exponents do not lie on the imaginary axis, we assume that they
lie strictly to the left of it. On the imaginary axis we assume that there is
either a single zero exponent,3 or a complex-conjugate pair of pure imaginary
ones. Analogous assumptions are made in the case of periodic motions: the
multipliers which do not lie on the unit circle must lie inside it, and those on
the unit circle consist of a single multiplier equal to +1, or −1, or a complex-
conjugate pair e±iϕ, 0 < ϕ < π. The corresponding bifurcations in these cases
are sufficiently simple, so wherever it is possible we do not impose restrictions
on the nonlinear terms.

The reason for our assumption on the spectrum of characteristic exponents
is quite obvious: we focus special attention on the problem of the loss of
stability of equilibrium states and periodic motions and on the bifurcations
accompanying the loss of stability. It is clear that these problems are a primary
subject of nonlinear dynamics.

2This was reported in the preface of the first edition of the book “The Theory of Oscil-
lations” by Andronov, Vitt and Khaikin (which was printed without the name of Vitt in
1937).

3The case of a double-zero characteristic exponent is partly considered in Sec. 13.2.
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Of course, the cases of higher degeneracies in the linear part are also very
interesting; for example, an equilibrium state with three characteristic expo-
nents 0, ±iω, or with two pairs of purely imaginary exponents ±iω1, ±iω2,
etc. In such cases of codimension two it is typical that the associated (trun-
cated) normal form reduces to a two-dimensional system with a finite number
of parameters. A systematic study of these normal forms is presented in [21,
40, 64, 82].

One must bear in mind, however, that a truncated normal form does not
always guarantee a complete reconstruction of the dynamics of the original
system. For instance, when the truncated normal forms possess additional
symmetries, these symmetries are, in principle, broken if the omitted higher-
order terms are taken back into account, and this can even lead to an onset
of chaos in some regions of the parameter space. These regions are extremely
narrow near a bifurcation point of codimension two but their size may expand
rapidly as we move away from the bifurcation point over a finite distance.

The significance of higher degeneracies (starting from codimension three)
in the linear part is that the effective normal forms become three-dimensional,
and may, as a result, exhibit complex dynamics, the so-called instant chaos,
even in the normal form itself. Such examples include the normal forms for a
bifurcation of an equilibrium state with a triplet of zero characteristic expo-
nents, and a complete or incomplete Jordan block, in which there may be a
spiral strange attractor [18], or a Lorenz attractor [129], respectively (the latter
case requires an additional symmetry). Since we will focus our considerations
only on simple dynamics, we do not include these topics in this book.

The key methods in our presentation of local bifurcations are based on the
center manifold theorem and on the invariant foliation technique (see Sec. 5.1.
of Part I). The assumption that there are no characteristic exponents to the
right of the imaginary axis (or no multipliers outside the unit circle) allows us
to conduct a smooth reduction of the system to a very convenient “standard
form.” We use this reduction throughout this book both in the study of local
bifurcations on the stability boundaries themselves and in the study of global
bifurcations on the route over the stability boundaries (Chap. 12).4 These

4In the general case where there are both stable and unstable characteristic exponents, or
stable and unstable multipliers in the spectrum, the local bifurcation problem does not cause
any special difficulties, thanks to the reduction onto the center manifold. Consequently, the
pictures from Chaps. 9–11 will need only some slight modifications where unstable directions
replace stable ones, or be added to existing directions in the space. However, the reader must
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global bifurcations are related to the fact that in contrast to an equilibrium
state which always persists on any boundary of its stability region, a periodic
orbit may not exist on the stability boundary. In particular, a periodic orbit
may disappear via one of the following scenarios:

(1) it shrinks to an equilibrium state;
(2) a saddle-node equilibrium state appears suddenly on it;
(3) it adheres into a homoclinic loop to a saddle equilibrium state; and
(4) it undergoes a blue-sky catastrophe, when its period and length both

become infinite when it approaches a stability boundary. In contrast to
homoclinic bifurcations, no equilibrium state is involved in a blue-sky
catastrophe.

In Chap. 12 we will study the global bifurcations of the disappearance of
saddle-node equilibrium states and periodic orbits. First, we present a multi-
dimensional analogue of a theorem by Andronov and Leontovich on the birth
of a stable limit cycle from the separatrix loop of a saddle-node on the plane.
Compared with the original proof in [130], our proof is drastically simplified
due to the use of the invariant foliation technique. We also consider the case
when a homoclinic loop to the saddle-node equilibrium enters the edge of the
node region (non-transverse case).

The bifurcation of a separatrix loop of a saddle-node was discovered by
Andronov and Vitt [14] in their study of the transition phenomena from syn-
chronization to beating modulations in radio-engineering. Specifically, they
had studied the periodically forced van der Pol equation

ẍ− µ(1− x2)ẋ + ω2
0x = µA sinωt ,

where µ � 1 and ω0 − ω ∼ µ. In the associated averaged equation, they
showed the existence of the saddle-node bifurcation which explained the sim-
ple transition from a stable equilibrium state to a periodic motion. However,
the question of the correspondence between the limit sets of the averaged
equation and those of the original one was not solved then. Andronov and
Vitt returned to this problem in their succeeding paper [15] where, using the
method of a small parameter by Poincaré, they proved the correspondence be-
tween the rough equilibrium state of an averaged system and a periodic orbit

be aware that since a reduction to the standard form is not always smooth in this general case,
it cannot be applied in a straightforward way to the analysis of certain global bifurcations
(such as the disappearance of saddle-saddle equilibria or saddle-saddle periodic orbits).
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of the original system. Later on, Krylov and Bogolyubov [81] proved the corre-
spondence between the rough periodic orbit in the averaged equations and the
two-dimensional invariant torus in the original system. Thus, a rigorous ex-
planation of the transition from synchronization to modulations in the original
system requires a study of the bifurcation of the possible birth of an invariant
torus at the disappearance of a saddle-node periodic orbit.

The general setting of the problem of global bifurcations on the disappear-
ance of a saddle-node periodic orbit is as follows. Assume that there exists a
saddle-node periodic orbit and that all trajectories which tend to this periodic
orbit as t → −∞ also tend to it as t → +∞ along some center manifold. In
other words, assume that the unstable manifold Wu of the saddle-node re-
turns to the saddle-node orbit from the side of the node region. In this case,
either:

(1) Wu is a two-dimensional invariant manifold such as a torus, or a Klein
bottle, or

(2) Wu is not a manifold.

If the system has a global cross-section (which always exists when we treat a
periodically forced autonomous system), the unstable manifold Wu will only
be a torus. The intersection of Wu with the cross-section is a closed curve
which is invariant under the Poincaré map. Consequently, the following two
cases are possible:

(1) the curve is smooth, and
(2) the curve is non-smooth.

If the curve is smooth when the saddle-node disappears, a closed attracting
invariant curve remains on the cross-section. This result is due to Afraimovich
and Shilnikov [3]. If the invariant curve is non-smooth, the situation becomes
essentially more complicated, because the disappearance of the saddle-node
may now lead the original system out of the Morse–Smale class, i.e. the sys-
tem may exhibit complex structures. Afraimovich and Shilnikov discovered
if the so-called “big lobe” or “small lobe” conditions are satisfied, then there
exists a sequence of parameter intervals corresponding to the occurrence of
complex dynamics. This result was subsequently improved by Newhouse,
Palis and Takens [97] who proved that there exists a sequence of parameter
values corresponding to a transverse homoclinic orbit (and, hence, there
always exists a sequence of intervals corresponding to complex dynamics),
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without using the big lobe condition but restricted to one-parameter families
of a special kind. An analogous result for this bifurcation for general one-
parameter families is also obtained in [151] where it is shown that if the big
lobe condition is satisfied, then chaos exists for all (small) parameter values
just after a saddle-node’s disappearance. On the contrary, if this condition
is not satisfied, then intervals of complex dynamics and those exhibiting only
simple dynamics (a continuous invariant curve exists) must alternate on the
parameter axis.

Note that the effect of alternating zones of simple and complex behavior
was discovered for the first time by van der Pol [154] in his experiments on the
periodic forcing of a lamp generator (this effect occurs when one tunes a radio,
and a characteristic noise is heard while moving from one station to another).
The first theoretical explanation was given by Cartwright and Littlewood [36]
for the van der Pol equation.

We will present in Sec. 12.2 a summary of results for the case where the
unstable manifold Wu of the saddle-node is homeomorphic to a torus along
with the proof of a theorem on the persistence of the invariant torus in the
smooth case. There, we will also develop a general theory for an effective
reduction of the problem to a study of some family of endomorphisms (smooth
non-invertible maps) of a circle.

When a system does not have a global cross-section, the unstable manifold
Wu of the saddle-node may also be a Klein bottle (if the system is defined in
Rn with n ≥ 4). If the Klein bottle is smooth at the bifurcation point, it will
persist after the disappearance of the saddle-node. For topological reasons, a
pair of periodic orbits will always exist on the Klein bottle such that the length
of both orbits will increase to infinity while approaching the event of the sud-
den appearance of the original saddle-node. Generically, these periodic orbits
will change stability infinitely many times via a forward and backward period-
doubling bifurcations. If the Klein bottle is non-smooth at the bifurcation
point, then the big lobe or the small lobe conditions should be applied. The
former guarantees complex dynamics for all small values of the parameter be-
yond the demise of saddle-node. In contrast, the small lobe condition can only
guarantee the existence of a sequence of intervals of parameter values where
complex dynamics occurs. Note that unlike the case where Wu is homeomor-
phic to a torus, in the case of a non-smooth Klein bottle the dynamics may be
simple for all small parameter values when the small lobe condition is not satis-
fied (the case of a “very small lobe”). These results are presented in Sec. 12.3.
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A totally different situation becomes possible in the case where the sys-
tem does not have a global cross-section, and when Wu is not a manifold.
In this case (Sec. 12.4), the disappearance of the saddle-node periodic orbit
may, under some additional conditions, give birth to another (unique and sta-
ble) periodic orbit. When this periodic orbit approaches the stability bound-
ary, both its length and period increases to infinity. This phenomenon is
called a blue-sky catastrophe. Since no physical model is presently known
for which this bifurcation occurs, we illustrate it by a number of natural
examples.

Note that in the n-dimensional case, where n ≥ 4, other topological
configurations of Wu may be realized. Such saddle-node bifurcations will
definitely lead the system out of the class of systems with simple dynam-
ics. For example, it is shown in [139, 152] that a hyperbolic attractor of the
Smale–Williams type may appear just after the disappearance of a saddle-node
periodic orbit.5

Another typical codimension-one bifurcation (left untouched in this book)
within the class of Morse–Smale systems includes the so-called saddle-saddle
bifurcations, where a non-rough saddle equilibrium state with one zero char-
acteristic exponent (the others lie in both left and right half-planes) coalesces
with another saddle having a different topological type. If, in addition, the
stable and unstable manifolds of the saddle-saddle point intersect each other
transversely along some homoclinic orbits, then as the bifurcating point dis-
appears, saddle periodic orbits are born from the homoclinic loops. If there
is only one homoclinic loop, then only one periodic orbit is born from it, and
respectively, this bifurcation does not lead the system out of the Morse–Smale
class. However, if there are more than one homoclinic loops, a hyperbolic limit
set with infinitely many saddle periodic orbits will appear after the saddle-
saddle vanishes [135].

A similar effect occurs when a saddle-saddle periodic orbit (with one
multiplier equal to 1 and the rest of the multipliers both inside and outside
of the unit circle) disappears. If the stable and unstable manifolds of the
saddle-saddle periodic orbits intersect across two (at least) smooth tori, then
the disappearance of such a periodic orbit is followed by the birth of a limit
set in which an infinite set of smooth saddle invariant tori is dense [6].

5A more general case is also considered in [139] concerning the disappearance of a saddle-
node torus and followed by the appearance of Anosov attractors and multi-dimensional
solenoids.
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In Chap. 13 we will consider the bifurcations of a homoclinic loop to a
saddle equilibrium state. We start with the two-dimensional case. First of
all, we investigate the question of the stability of the separatrix loop6 in the
generic case (non-zero saddle value), as well as in the case of a zero sad-
dle value. Next, we elaborate on the cases of arbitrarily finite codimensions
where the so-called Dulac sequence is constructed, which allows one to deter-
mine the stability of the loop via the sign of the first non-zero term in this
sequence.

In the case of a non-zero saddle value, we present the classical result by
Andronov and Leontovich on the birth of a unique limit cycle at the bifurcation
of the separatrix loop. Our proof differs from the original proof in [9] where
Andronov and Leontovich essentially used the topology of the plane. However,
following Andronov and Leontovich we present our proof under a minimal
smoothness requirement (C1).

The case of zero saddle value was considered by E. A. Leontovich in 1951.
Her main result is presented in Sec. 13.3, rephrased in somewhat different
terms: in the case of codimension n (i.e. when exactly the first (n−1) terms in
the Dulac sequence are zero) not more than n limit cycles can bifurcate from
a separatrix loop on the plane; moreover, this estimate is sharp.

In the same section we give the bifurcation diagrams for the codimension
two case with a first zero saddle value and a non-zero first separatrix value
(the second term of the Dulac sequence) at the bifurcation point. Leontovich’s
method is based on the construction of a Poincaré map, which allows one to
consider homoclinic loops on non-orientable two-dimensional surfaces as well,
where a small-neighborhood of the separatrix loop may be a Möbius band.
Here, we discuss the bifurcation diagrams for both cases.

The bifurcations of periodic orbits from a homoclinic loop of a multi-
dimensional saddle equilibrium state are considered in Sec. 13.4. First, the
conditions for the birth of a stable periodic orbit are found. These condi-
tions stipulate that the unstable manifold of the equilibrium state must be
one-dimensional and the saddle value must be negative. In fact, the precise
theorem (Theorem 13.6) is a direct generalization of the Andronov–Leontovich
theorem to the multi-dimensional case. We emphasize again that in compari-
son with the original proof due to Shilnikov [130], our proof here requires only
the C1-smoothness of the vector field.

6Only one-sided stability is naturally considered.
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We consider next the homoclinic bifurcation of the saddle whose unsta-
ble manifold is still one-dimensional, but the saddle value is now assumed to
be positive. Unlike the case of the negative saddle value, here we need some
additional non-degeneracy conditions to be imposed on the system. These
conditions, in fact, imply the existence of a stable two-dimensional invariant
C1-manifold in the system, which is either a cylinder or a Möbius band, de-
pending on the sign of the so-called separatrix value. Hence, our problem is
reduced, essentially, to the two-dimensional case considered in Sec. 13.2. Since
this problem is a particular case of a more general problem (the case of the
multi-dimensional unstable manifold) considered in Sec. 13.5, we focus more
on the geometry underlying the result. Such an approach is relevant to the
study of the Lorenz attractors, as well as some other homoclinic bifurcations
of higher codimensions.

We end this section with a consideration of the homoclinic loop to a saddle-
focus whose unstable manifold is one-dimensional. It is shown that when the
saddle value is positive, infinitely many saddle periodic orbits coexist near such
a homoclinic loop of the saddle-focus (Theorem 13.8).

The existence of complex dynamics near a homoclinic loop to a saddle-focus
was discovered by L. Shilnikov for the three-dimensional case in [131]. Sub-
sequently, the four-dimensional case7 was considered in [132]; and the general
case in [136].

In Sec. 13.5 we consider the bifurcation of the homoclinic loop of a
saddle without any restrictions on the dimensions of its stable and unstable
manifolds. We prove a theorem which gives the conditions for the birth of a
single periodic orbit from the loop [134], and also formulate (without proof)
a theorem on complex dynamics in a neighborhood of a homoclinic loop to
a saddle-focus. Here, we show how the non-local center manifold theorem
(Chap. 6 of Part I) can be used for simple saddles to reduce our analysis to
known results (Theorem 13.6).

In the case of the saddle-focus, the result of [136] in its full generality cannot
be obtained by a reduction to any invariant manifold. However, generically
(i.e. under some simple non-degeneracy conditions) the problem can be reduced
to a three- or four-dimensional invariant manifold [120, 150].

Section 13.6 discusses three main cases of codimension-two bifurcations of
a homoclinic loop to a saddle. These cases were selected by Shilnikov in [138]

7Here, the saddle-focus has two pairs of complex-conjugate characteristic exponents and
the divergence of the vector field is non-vanishing at the saddle-focus.
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for explaining the immediate onset of the Lorenz attractor from a homoclinic
butterfly. Later, these bifurcations attracted much interest (see references in
Sec. 13.6). Here we consider a multi-dimensional case of a homoclinic loop to
a saddle with zero saddle value and those cases of the so-called “orbit-flip”
and “inclination-flip” bifurcations which do not lead to complex dynamics.
Although the corresponding bifurcation diagrams are widely known (see [126,
77, 129] for the inclination-flip case, [119] for the orbit-flip case, and [99, 38,
77, 65] for the case of zero saddle-value), an explicit and complete proof is
published here, probably for the first time.

In Sec. 13.7 we describe two other cases of codimension two, namely the
bifurcations of a homoclinic-8 and a heteroclinic cycle with two saddles. Both
cases are considered within the Morse–Smale class (we require the saddle-
value to be negative in the case of the homoclinic-8; in the case of the hete-
roclinic cycle, either the saddle values must be negative or the conditions which
guarantee the existence of a two-dimensional invariant manifold must be
satisfied). The results surveyed in this section are extracted from [148, 151,
50, 149] for the homoclinic-8, and [121, 122, 123, 124, 125] for the hetero-
clinic cycles. Some other results on heteroclinic connections with a different
topology [34, 35] are also presented. The structure of bifurcation diagrams
in the case where two saddle-foci are involved is much more complicated in
contrast to the case of the connection between two saddles (even though the
dynamics remains simple in both cases). According to [158], the fine structure
of the bifurcation diagrams for the saddle-focus case is sensitive to arbitrarily
small changes of the continuous topological invariants (moduli) discussed in
Sec. 8.3.

The last chapter focuses on the general problems of the transition over
the stability boundaries of equilibrium states and periodic orbits. These ques-
tions have an immediate significance for the subject of nonlinear dynamics,
specially in cases where changes in the parameters of a working device may push
it out of its stability region, or when the control parameters are deliberately
chosen as close to the stability boundary as possible in order to achieve maximal
performance. For stationary regimes, the corresponding problems were
addressed by Bautin in his monograph first published in 1949. He classi-
fied stability boundaries as either safe or dangerous. When a safe boundary is
crossed, the representative phase point does not leave a small neighborhood of
the bifurcating equilibrium state or periodic orbit, although the latter becomes
unstable. In the case of a dangerous boundary, the phase point blows out from
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a small neighborhood of the bifurcating trajectory. Evidently, a local analysis
becomes inadequate in the case of dangerous boundaries: one must investigate
here how the unstable sets behave at the critical moment. For instance, if a
stable limit cycle adheres to a homoclinic loop of a saddle, it becomes crucial
to know where the other separatrix goes to since its ω-limit set will be the
new dynamical regime of the system. In other cases, it turns out, however,
that there may be more than one stable limit set included in the boundary of
the unstable set at the critical parameter value (if this bifurcation is within
the Morse–Smale class, these limit sets are stable equilibria or periodic orbits).
Another option embraces the so-called dynamically indefinite stability bound-
ary where a random choice of the new regime occurs as a natural dynamical
phenomenon — the dynamical uncertainty.

The number of papers and monographs on the theory of bifurcations is very
large and increasing rapidly. Some of the questions considered in this book are,
to a certain extent, reflected in other books as well (see especially the books
marked by an asterisk in the list of references). We stress, however, that in
many works, while studying global bifurcations, the assumption of smooth lin-
earization of the equations near equilibrium states and periodic orbits is very
often made only for the sake of maximal convenience. The linearization as-
sumption requires the absence of resonances, which in turn imposes an infinite
set of unnecessary additional conditions on the system (or, the number of such
assumptions, first finite, may grow very fast as the dimension of the system
grows). Therefore, any approach based on linearization will cast some doubts
on the full applicability of the theoretical results to dynamical models.8 The
methods presented in this book are free from these problems. This is achieved
by the use of techniques developed by our research group in Nizhny Novgorod.
It is applied in Chaps. 12 and 13 to non-local bifurcations. We stress that
we need only a very small degree of smoothness. This, perhaps, makes our
analysis more complicated, but it guarantees and enhances the validity and
the adequacy of our global bifurcation results. The methods presented in this
book are applicable also for systems with complex dynamics, in particular, for
systems with homoclinic tangencies [58, 59, 62], see also [100, 101].

8It happens rather often that some results which sound fine mathematically, being for-
mulated for “typical” or “generic” families of dynamical systems, when applied to a specific
problem require the verification of their stipulated conditions. It is unfair, however, to force
a researcher to consume time and computational resources only to check on conditions which
are, in fact, unnecessary.
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