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Abstract— We argue that the Lukyanov-Shilnikov
bifurcation of a saddle-node periodic orbit with non-
central homoclinics explains the effect of bi-stability
observed in a neuron model based on a Hodgkin-
Huxley formalism. In this model the dominating
regime, depending on the initial state, can be either
spiking oscillations or weakly irregular bursting ones.
It is also shown how the bifurcation of the blue-sky
catastrophe may underlie a continuous transition be-
tween the above regimes. We exploit the features of
this bifurcation (a) to explain transition from tonic
spiking activity to periodic bursting regime; (b) to
identify the principal bifurcational parameters in the
system; (c) to control the temporal characteristics of
bursting behavior via these parameters.

I. INTRODUCTION

Living neurons are reported to exhibit a plethora of
dynamical regimes, either regular or irregular, such
as tonic spiking behavior, various bursting and sub-
threshold oscillations . These regimes reflect com-
plexity of dynamics of membrane ionic currents, op-
erating on different time scales. These ionic cur-
rents are commonly quantified through voltage-clamp
experiments according to a formalism introduced by
Hodgkin and Huxley. Blockade of some groups of
the currents simplify the neuron dynamics, and can
elicit characteristic behaviors of neurons. Under such
conditions we have better chance to thoroughly un-
derstand dynamics, these characteristic behaviors can
present an interesting phenomena to study from a per-
spective of the theory of non-linear dynamical sys-
tems. One of commonly observed characteristic be-

haviors is that observed under blockade of Ca2+ cur-
rents. In leech neurons, application of divalent ions
like Co2+, which block Ca2+ currents, along with
partial block of outward currents, elicit slow plateau-
like oscillations with up to 60s period and up to 20
second plateau duration (Fig. 1) [1], [3]. These exper-
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Fig. 1. Slow plateau-like oscillations in heart interneu-
rons after bath application of Co2+-containing saline
and intracellular of TEA+.

iments can be used to understand general biophysical
principals of how bursting behavior is generated and
how major temporal characteristics like period and
burst duration are controlled. A particular subject for
theoretical analysis is how these slow temporal char-
acteristics are supported in a system with dynamics
based on much faster time scales (time constants of
the ionic currents involved supposedly do not exceed
one second). In our previous model study [5] we used
the model developed in [4] with omitted Ca2+ cur-
rents and two K+ currents to bring the model in accor-
dance with the pharmacological conditions described
above. We showed that the classical model presenta-
tion of the transient Na+ current is sufficient for the
generation of long plateau behavior due to properties
of the window current (transient Na+ current can be



observed in a certain range of membrane potential val-
ues as a persistent current, a window current). The
simplified model (I) can provide slow plateau-like os-
cillations with a sufficiently long plateau phase. A
noninactivating Na+ current may be used in a model
to explain long inter-plateau intervals.

Here we employ the model described in [5] which is
a system of three stiff ordinary differential equations:

dV

dt
= −2(ḡK2 m2

K2(V − EK) + gl (V − El)+

ḡNaf(−150, 0.0305, V)3hNa(V − ENa)),

dmK2

dt
=

f(−83,−0.008, V) − mK2

τhK2

,

dhNa

dt
=

f(500., 0.034, V) − hNa

τhNa

,

(1)
where the variables V, mK2, and hNa are the mem-

brane potential, activation of the persistent K+ current
(IK2) and inactivation of the transient Na+ current,
respectively. The parameters are: ḡK2 is the maximum
conductance of IK2; EK+ and ENa are the reversal po-
tentials of K+ and Na+, respectively; ḡNa is the max-
imum conductance of INa; gl is the conductance of
the leak current; El is the reversal potential of the leak
current; τhK2

= 0.8 and τhNa
are the time constants of

activation of IK2 and inactivation of INa; the function
f is given by f(A, V, B) = 1/(1 + eA(V+B)).

One of the most fascinating nonlinear effects is that
the neuron may produce both tonic spiking and burst-
ing oscillations depending on the initial state. In terms
of dynamical systems this means that in the phase
space of the proper slow-fast system there must be
two co-existing attractors with rather complex basins
of attraction. Another challenge for the theoretical
analysis is to explain the continuous transition from
one regime to another as the control parameters vary
slightly. Obviously this subtle effect is to be described
properly within a framework of the methods qualita-
tive theory of slow-fast systems. Needless to men-
tion that some other crucial qualitative issues like the
variability of the number of spikes in a burst, search
for the control parameters which can prolong the rest
phase of the bursting regime, etc, are to be discussed
as well. The analysis below of two distinct bifurca-
tions of a saddle-node periodic orbit with homoclinics
provides the answers to the these questions.

II. BIFURCATION MENU

Understanding of intrinsic dynamics of the neuron
and the principal mechanisms underlying the transi-
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Fig. 2. Co-existence of spiking and bursting modes in
model (I) at ḡK2 = 30nS, EK = −0.06995V, ENa =

0.045V, ḡNa = 200nS, gl = 8nS, El = −0.046V,
τhK2

= 0.8 and τhNa
= 0.04. The small round peri-

odic orbit corresponds to the tonic-spikes shown in (c);
the topology of the bursting cycle (b) is revealed in Fig-
ure 3 below.

tions between the regimes can be gained using the
methods of the qualitative theory of slow-fast dynam-
ical systems, see recent [5], [?], [6].

Let us consider such a 3D formalized system in the
following appropriate form:

ẋ = F (x, α) − z, ż = µG(x, z, α), (2)

where x = (x, y) is a fast variable, z is a slow one,
α is a vector of control parameters, 0 < µ << 1 is a
small parameter. The function G(x, z, α) is assumed
linear in x. We also suppose that at µ = 0, when the



z-variable becomes a parameter in the fast subsystem,
the equilibria and limit cycles of the latter evolve as z
varies so that as shown in Fig. 3. The Z-shaped curve
here is the surface Meq of equilibria of the fast sub-
system, which is determined by z = F (x, α). When
z ≤ zAH the fast subsystem has a single stable equi-
librium state O1 that loses stability through the super-
critical Andronov-Hopf bifurcation when z > zAH.
The fold points correspond the saddle-nodes. Within
zSN < z < z∗SN the fast system has three equilib-
ria: a stable one O2 on the lower branch of Meq; the
middle segment corresponds to the saddle point O at
which the divergence of the vector field (II) is neg-
ative; the upper branch corresponds to the unstable
focus O1 surrounded by the stable limit cycle. MLC

denotes the parabolic-shaped surface foliated by the
stable limit cycles of the fast subsystem at the cor-
responding values of z. This surface terminates at
z = zH when the stable limit cycles adheres to the
homoclinic loop of the saddle and disappears.

The middle (orange) curve in Fig. 3 that crosses the
surface Meq is a nucline: the surface determined by
the equation G(x, z, α) = 0. The intersection point is
an equilibrium state of the united system, which is a
saddle, typically. It is assumed that G < 0 (G > 0)
below (above) the nucline.

When 0 < µ << 1 the dynamics of system (II) un-
der the above assumptions is of two time scales. The
fast component is due to the momentary jumps near
the fold on Meq at z = zSN and at the termination
point z = zH on Mlc. The slow component reveals on
the the so-called surface of slow motions which is µ-
close to the corresponding segments on MLC and Meq

of the unperturbed fast subsystem that correspond to
the attracting rough limit cycles and equilibria, re-
spectively.

The slow motion on MLC is similar to a helix drift-
ing towards the increasing of the z-variable with step
of order µ. Having averaged the fast motion over the
period of the stable limit cycle in the unperturbed fast
system, we get the following slow subsystem:

z̄ = µG̃(z, α),

G̃(z) = 1
T (z,α)

T (z,α)∫

0
G(ϕ(t; z, α), z) dt,

(3)

where x = ϕ(t, z, α) is a limit cycle of period T (z, α)
in the fast subsystem. This system is defined on the
slow manifold corresponding to the equilibria of the
corresponding Portryagin averaged fast subsystem. In
Fig. 3 the corresponding branch is labelled by x̄. It

originates at the Andronov-Hopf bifurcation and ter-
minates at the homoclinic loop.

A point of transverse intersection of the nucline
G = 0 with the the manifold x̄ corresponds to a rough
equilibrium state of the united averaged system, and
hence to a structurally stable periodic orbit in [II].
However, if such a point is due to the tangency of the
nucline with x̄, then the periodic orbit will be of a
saddle-node type.

Next we discuss the ways the bifurcation of such a
saddle-node periodic orbit can unfold. This depends
on the global behavior of its 2D unstable manifold
W u

Lsn

.
Figure 3 illustrates the Lukyanov-Shilnikov bifur-

cation [9] right after a saddle-node periodic orbit Lsn

de-couples . A partial unfolding of the bifurcation is

Z=0
O

Fig. 3. The unstable manifold of the saddle periodic or-
bit separates the attraction domain of the stable peri-
odic orbit corresponding to tonic spikes, and that of a
helix-with-a-handle-shaped attractor corresponding to
the burst mode of the neuron. At the bifurcation mo-
ment the stable manifold W

s of the saddle periodic or-
bit becomes the strongly stable (non-leading) manifold
W

ss of the saddle-node one.

shown in Fig. 4. One of the greatest features of this
bifurcation is that the complex dynamics persists nev-
ertheless even after the double periodic orbit has van-
ished. On the other hand, after the double cycle de-
couples, the stable manifold of the saddle cycle sepa-
rates the attraction domain of the stable one from that
of an helix-like attractor corresponding to the bursting
oscillations, see Figs. 2 and 4.

The scenario [7] of the blue-sky catastrophe in such
a slow-fast system is given in Fig. 5 [7]. Here, the
unstable manifold of the saddle-node periodic orbit
Lsn comes back to Lsn making infinitely many revo-
lutions on the cylinder-like surface of the slow motion



Fig. 4. Unfolding of the Lukyanov-Shilnikov bifurcation
of a saddle-node fixed point with non-central homo-
clinics. The two bifurcation curves originating from
the origin correspond to the very first and last homo-
clinic tangencies between the stable and unstable man-
ifolds of the saddle fixed point. It is seen that the com-
plex hyperbolic structure due to transverse homoclinic
crossings persists after the saddle-node point vanishes.

MLC . The stability of the infinite cycle is due to the
contraction at a saddle-node equilibrium state of the
fast subsystem. It is important to stress here that the
above mechanism provides a smooth transition from a
regime of continuous spiking oscillations to bursting
ones. It also explains well the order of alteration of
the number of inter-spikes in a single burst. Next to
the critical moment a phenomena of elliptic bursts is
observed, see Fig. 6 Thus, by manipulating the height
and shape of the nucline, one can vary the existing dy-
namical regimes. In particular, the resting phase of the
burst can be prolonged due to the similar effect of the
dynamical memory that exists near the phantom of the
vanished saddle-node point on the lower branch of the
slow motion surface. This may explain the very wide
duration range (up to 20 seconds) of the plateau-like
oscillations observed in the leech heart interneuron.
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