Selecta Mathematica Sovietica 0272-9903/91/020105-13 $1.50 + 0.20/0
Vol. 10, No. 2 (1991) C 1991 Birkhiduser Verlag, Basel

Bifurcation and Chaos in the
Marioka—Shimizu System*

A. L. Shil’nikov

This paper is concerned with the qualitative analysis of the limit regimes and
strange attractors (SA) in the Marioka—Shimizu model [6]
X =y, y=—xz+x— 4y, Z=x>—uaz, 3x\>0, (Hn

where « and A are positive parameters.

This system was proposed as an alternative model for studying the dynamics
of the Lorenz equations for large Rayleigh numbers (Ra). Actually, the Lorenz
model

x.c= “G(xc—yc)’ )}cz ‘—xczc+Raxc_yc’ 2c=xoyc—bzc (2)

with the substitutions

e g2
x £

x = ( x.) zy=¢4z xe ty = A t
H \/ZO'_b s Yu \/; Ye (4] H < 20_ ] H £ c
and the introduction of new parameters

aLebg2,  BLe20—b)""2  AfRea+1)e "% gL (Ra—-1)"'7

is transformed [4] to the form

3
- - XH L) . 2 .
Xt = VH Yu = _‘B"_XHZH'*'XH—’U"H, Iy =Xy —AZy. 3)

System (1) is obtained from (3) in the limit case for § — oc. In this system,
stable symmetric and asymmetric periodic motions, as well as stochastic behavior

* * Originally published in Methods of the Qualitative Theory of Differential Equations, Gorky State
University, 1986, pp. 180—-193. Translated by Paul B. Slater.
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of trajectories, were discovered by the authors of [6] through a computer
calculation.

As in the Lorenz model, the Marioka-Shimizu system is invariant with
respect to the substitution (x, y, z) = (—x, =, z). The system (1) has three
equilibrium states: 0(0, 0, 0) and O, ,( £ 2’ 2,0, 1). It is easy to see that the roots
of the characteristic equation are the following:

k= —i2— A4+ )2 ky=—a ky=—A2+ A4+ 1),

that is, O is a saddle of type (2.1). In O, , the characteristic equation has the
form

y3 4 (a0 + A)y?+ a4y + 20 =0.

The boundary of the domain of stability is determined by the relation
R =(x+ )4 —2=0. For R >0, O, , are the stable foci, and for R <0, 0, , are
of saddle-focus type (1.2). On the stability boundary R =0, the characteristic
equation has the roots

pa= i =A%, 3= —2/A

As we know, the question of the nature of the bifurcation as one crosses
R =0 is decided by the sign of the first Lyapunov value. To calculate it, let us
use the method worked out by N. N. Bautin [3]. Following [3], [7], let us reduce
system (1) to a single third-order equation

X+ (o + )X +oadx —ax + x° —ffc —f—cf—O
x x
Let us move the origin in the equilibrium state by substituting x = ¢ + x,, where
xo=a'2 After the substitution, the necessary terms for computing the ﬁrst
Lyapunov value will be taken into account if, in the expansion, (& + x,) ' i
bounded by terms of degree no higher than the first. As a result, we will obtam
the equation

g et

. . e A s A L
E+(a+AE+adl — (@ —3x3)E +3x,82 -8 —— P+ 588 - 2 =0,
X x5 Xo X}
which we write anew in the form of the system
: S G A AL, &&E
ét=‘(1+/‘~)él‘“"~a€2"2“63—‘3x0‘f§+51 2+§§+”‘5§" 253‘52_ ! 223,
0 Xo X0 X0
éz=fu 53‘-’52-

In our case, the expression for the first Lyapunov value, calculated with the
boundary R = 0, looks like the following:



BIFURCATION AND CHAOS 107

npqu»E
L=
LT 8AJ(p? +49)

+ 187+ A%+ 484* — 104° + 164° — 44 — 64),

(=347 4+23210— % — 53,8 4447

A=¢q*(p*+q), p=2+ q=2-i%

The determination of the sign of &%, was conducted on the computer by
the Sturm method, with the help of the system of analytic computations
REDUCE. It turned out that on the curve of neutrality R =0: 2 =(2 — 4%/
4, 4 €]0, ﬁ], &, is negative. Consequently, as one passes across the stability
boundary R =0, stable periodic motions S, and S, are generated as a result of
a direct Andronov—Hopf bifurcation from the equilibrium states O, and O,. In
this manner, in contrast to the Lorenz model, in the Marioka—Shimizu system
the stability boundary of the nonzero equilibrium states is secure.

As also in the Lorenz model, an important bifurcated curve is /, (see Figure
1) —the formation of simple homoclinic curves ', and T, of the saddle O.
However, in our case, the saddle variable 6 = —a — 1/2 + (4?/4 + 1)> on /, can

Figure 1.
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assume both negative and positive values. Therefore, the further study of the
system naturally breaks into two cases.

The case o < 0. Here, everything is simple. As one passes the curve R =0
from the domain D, to D, (see Figure 1), stable periodic motions S, and S, are
generated from O, and O,. On /,, the motions S, and S, go respectively, into T,
and T,. With the destruction of the contour ' =T, U0 UT, in D,, a stable
symmetric (x, y) —( —x, —y) periodic motion M appears. Let us note that in
D, we have that M is the unique stable limiting set.

The case o > 0. All the necessary conditions of the theorem from [8] are
satisfied on /;: the separatrices I'; and T, return to O along the leading direction
(the z-axis) and the separatrix value A is positive. Therefore, as one crosses /,
from D, to D,, from each T, and T, there are generated, according to the saddle
periodic motion, C; and C,, respectively. On /;, we have that C, and S|, and C,
and S,, merge, forming structurally unstable periodic motions of saddle-node
type, and disappear. As is known [1], along with C, and C,, there is also
generated an invariant Q-limit set, homeomorphic to the superstructure over the
Bernoulli scheme with two symbols, possessing a countable set of saddle
periodic motions, everywhere dense in it. This set is not attractive and, conse-
quently, the stable sets will be O, and O, in D,, and S, and S, in D;.

The bifurcation curve /, corresponds to the birth of an SA of the Lorenz
attractor type. This moment is characterized by the fact that on /, the separa-
trices I'; and T, lie on the two-dimensional stable manifolds W* of C, and C,.
Thus, as in the Marioka—Shimizu model, there occurs soﬁhng like the
beginning of an SA, similar to the Lorenz model [1]. A numerical analysis of the
system revealed the following peculiarity: at the point ¢ =0 on /,, the first
separatrix value A is positive and less than unity. Therefore, the formation of a
lacuna with a saddle symmetric periodic motion G (see below) can precede the
disappearance of the SA.

The point ¢ =0 is the boundary of the following bifurcation curves (see
Figure 2):

l,—the origin of an SA of the Lorenz attractor type;

l;—single-circuit asymmetric periodic motions of saddle-node type;

[,—a symmetric periodic motion by a unit multiplier;

/;—the boundary of the domain of existence of the SA;

ls—double-circuit or 0-1 type (in relation to those occurring on /;) homo-
clinic curves of the saddle O.

On /; there exists a point at which the separatrix value 4 vanishes. This point
breaks /s into two homoclinic curves of orientable and nonorientable type,
respectively. On /, there is a point where the second Lyapunov value % of the
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Figure 2.

Poincaré mapping of an area element, transversal to the symmetric periodic
motion, equals zero. The first Lyapunov value equals zero, by the symmetry of
the system.

The point 4 = 0 serves as the boundary for the curves /s and [;, determining
the domain of the SA. Also, /, the curve of the origin of two structurally
unstable double-circuit asymmetric periodic motions of saddle-node type, joins
this point. The second boundary / is the point % =0 on l,. This point divides
Iy into two: [, where % >0, and [/}, where % < 0.

As was already noted, the domain of existence of the SA is bounded by /s and
[; besides /,. Let us consider the evolution of the SA as one passes from D, to
D; across /5 and /[ in the first case, and /s and /%, in the second.

In the first case, on /; (¥ >0) the symmetric saddle periodic motion G
disintegrates into three, and in D, there exist in the lacuna three periodic
motions: a stable M and a pair of asymmetric periodic motions of saddle type,
k, and k,. The bifurcation on / is similar to that occurring on /,, with the only
difference that ', and T, lie on the W* of k, and k,. In D,, the separatrices T,
and I', now approach M. On /; T, and T, become doubly-asymptotic to O,
forming a double-circuit homoclinic curve, into which k, and k, go.

In the second case, let us describe the bifurcations as one passes across /s and

4 in the reverse order, that is, from D, to D,. As already noted, M is the unique
stable limit set in D, to which I', and T, approach. As one passes across /; from
the homoclinic curves of the saddle O, k, and k, are born. On 17 (£ <0) the
cycle M bifurcates into three: G and two stable asymmetric periodic motions N,
and N,. Now I'; and T, approach N, and N,. On /; I, and I', lie on the W* of
k, and k,. Thus, there exist five periodic motions in the lacuna: G, N\ ,and k, .
The last merge pairwise on /, forming a structurally unstable periodic motion
of saddle-node type, and disappear. It is apparent that, in this case, the chain of
bifurcations is similar to the mechanism of the origin of a SA in crossing /,, with
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the only difference being that the role of the single-circuit asymmetric periodic
motions is played by the two-circuit asymmetric ones.'

There is one more boundary of the domain of existence of a SA of Lorenz
attractor type, namely /,, on which the separatrix value 4 vanishes. Crossing /,
into the domain where 4 <0 leads to having the SA of Lorenz type become a
quasi-attractor. The cause of this is the appearance of homoclinic Poincaré
curves, and consequently, of stable periodic motions, since the divergence of the
vector field is negative. As was shown in [2], their existence is connected with the
formation of Smale horseshoes. The latter also means that while crossing /5,
saddle periodic motions with negative multipliers appear.

As was noted above, the point 4 =0 on /, serves as the boundary of /;. In a
neighborhood of this point, the curves k, /,, and l,,, corresponding to the
bifurcations of the doubling of the period, originate. As one crosses /s, the
cycles N, and N, lose stability, and cycles of a doubled period appear, etc. In all,
six steps were computed in the cascade of doublings. In analogy with the
Feigenbaum mechanism, a magnitude 6 ~ 4.0 was found.

The structure of the bifurcation set in a neighborhood of ¢ =0

As follows from [9], the nature of the behavior of the system in the neighbor-
hood of such a point essentially depends on the sign and value of the separatrix
value 4. It was shown in [10] that the basic bifurcation curves (the formations
of the lacuna, the loops of the separatrices, . . .) of a two-dimensional Poincaré
mapping on a transversal area element in a sufficiently small neighborhood W3
of the saddle O (depending on ¢) can be fully studied with the help of a
one-dimensional mapping of the form

T,:%=(—p+ Ax'~°) sign(x), 4

where p is a parameter corresponding to the coordinates of the first intersection
of the separatrices with the section ¢ = c/|k,|, where k; is the least negative
eigenvalue in O. The value yu = 0 corresponds in (1) to the formation of simple
homoclinic curves O on /,, and u <0 corresponds to the domain of the
parameters located above /,. We will consider the case 4 <1, since, as a
numerical analysis of system (1) showed, the limit set on the curve ¢ = 0 is the
stable symmetric periodic motion M. The refined value 4 = 0.81 was obtained
with the help of the Poincaré map at the point ¢ =0 on L2

Let us consider the case ¢ <0. For u < 0 (see Figure 3) the mapping possesses
two stable fixed points S, and S,. As u—0, S, and S, go into the point of

| This mechanism of the death of a SA was “phenomenologically” described in [1].
2 et us observe that a similar mapping with 4 > 1 was also considered in [11].
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discontinuity. For u < 0, from the discontinuity point, a stable cycle M of period
two is generated (see Figure 4), one of the coordinates of which, by symmetry,
is found as the fixed point of the mapping, of the form (see Figure 5)

X=—(—p+Ax'9).

The case ¢ 2 0

For u <0, as in the first case, the mapping (4) has only the stable points S, and
S, (see Figure 6). As one passes across g =0 from the point of discontinuity,
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there appear two unstable points C, and C; along with the unstable Q, limit set,
homeomorphic to a one-sided Bernoulli scheme with two symbols, the extreme
points of which are C, and C, (see Figure 7).

The curve /, (see Figure 2) is the boundary of the origin of the Lorenz
attractor. The moment of bifurcation ensues when (see Figure 8)

1—e¢

Xc, =W X, = —p+Axc

Hence we obtain /,: y = (4/2)"".
As p increases, the points S; and C, (S, and C,) draw together, and on /, they
form a nonrough point of saddle-node type (see Figure 9).

i
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Figure 6.
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Figure 7.

From the conditions
dx
dx X
we find the equation /,: u = 4" -1,
Let us consider the evolution of the SA for an increase in u. It is known that

it is a structually unstable set and for dx/dx > 2, simply-connected. In accor-
dance with [1], the appearance of the lacuna and, consequently, the loss of

=1=(1-94x;",  x=—p+Axi

X

Rl I 7’1

Figure 8.
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simple-connectivity occurs, when the separatrices lie on a periodic motion, and
the periodic motion does not have homoclinic trajectories. In the language of
cascades, this means that the images of the point of discontinuity must lie on an
unstable cycle G of period two with coordinates =+ xg (xg > 0). Therefore, the
conditions x; = —p + A, ¢and xg = —(—p + AxL—¢) must be satisfied. The
bifurcation curve /; of the formation of the lacuna looks like this:

p=(4//2)" e (1+ 0@ + ) (5)

It is possible to evaluate the moment of origin of the lacuna, using the condition
of violation of strong transitivity

d|

|~ V2= oaxe xg = —(—p + Ax5™),

In this case, the equation of the bifurcation curve is similar to (5). It is easy to
see that the condition 4 <./2 on the magnitude (we have 4 < 1) follows
automatically from (5).

The next bifurcation curve is /,; during a passage across this, the cycle G is
broken into a stable cycle M and two unstable asymmetric cycles k; and k,, also
of period two (see Figure 10). The cycle G bifurcates when dx|dx|,, = 1. Let us
take advantage of the symmetry and find /, from the conditions

dx

e '¥‘=—~1=—(1—8)Ax;‘, x,=—(—p+Ax0).

From this, we find the equation /;: u = 241t
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The curve /s is the boundary of the domain of the SA. If one denotes the
positive coordinates k, and k, by X, and x,, where x, () < Xk, (1), then the
equation of /s is found from the condition

Xe (W)= —p+Ap' 0 x = —p 4 Ax)c

Without presenting an explicit form of /;, let us note that it is situated between
l, and /.
On / the condition T2(0_ ) = 0 is satisfied (see Figure 11). In the language of

S
K-

Figure 11.
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Figure 12,

flows, this shows the existence of two-circuit homoclinic curves O, into which
the cycles k, and k, go. In this case, the equation of the bifurcation curve looks
like this:
u=A4wr

In conclusion, let us note that in the constmction of bifurcation curves of
periodic motions, a suite of programs [P&>was used. Figures 3-11 were
obtained by a numerical mapping of the transversal W*O of a segment in a
neighborhood of ¢ = 0 on /,; and Figures 12 and 13, near the point 4 =0 on /.

bl

Figure 13.



i,

AR LR

(1

7
(8]
(9]
[10]

[11]

BIFURCATION AND CHAOs 117

References

V. S. Afraimovich, V. V. Bykov. and L. P. Shil'nikov. The origin and structure of the Loren:
attractor, Sov. Phys. Dokl. 22:5 (1977), 253-255. (Originally published in Dokl. Akad. Nauk
SSSR 234:2 (1977), 336-339); On attracting structurally unstable limit sets of Lorenz attractor type,
Trans. Moscow Math. Soc. 1983:2, 153-216. (Originally published in Trudy Moskov. Mat.
Obshch. 44 (1982), 150-213))

V. S. Afraimovich and L. P. Shil'nikov, Strange artraciors and quasi-attractors, in Nonlinear
Dynamics and Turbulence, Pitman, New York, 1983, pp. 1-34.

N. N. Bautin, The behavior of dynamical systems near the boundaries of the domain of stability
(in Russian), Nauka, Moscow, 1984.

V. N. Belyh, Qualitative methods of the theory of nonlinear oscillations of concentrated systems
(textbook) (in Russian), Gorky State University Press, Gorky, 1980.

A. 1. Hibnik, Periodic solutions of systems of differential equations (in Russian), in Algorithms and
programs in FORTRAN: Materials for the mathematical support of computers, ONTSI NTSBI
(Special National Information Center, Scientific Center for Biological Research) Pushchino, 1979,
vol. 5.

N. Marioka and T. Shimizu, On the bifurcation of a symmetric limit cycle to an asymmetric one in
a simple model, Phys. Lett. 76A:3-4 (1980), 201-204.

N. V. Roshin, Unsafe stability boundaries of the Lorenz model, J. Appl. Math. Mech. 42:5 (1978),
1038-1041. (Originally published in Prikl. Mat. Meh. 42:5 (1978), 950-952.)

L. P. Shil'nikov, Bifurcation theory and the Lorenz model. Appendix II (in Russian), in Bifurcation
of the generation of a cycle and its applications, Mir, Moscow, 1980.

L. P. Shil'nikov, The theory of bifurcations and quasi-hyperbolic attractors (in Russian), Uspeh.
Mat. Nauk 36:4 (1981), 240-241.

L. P. Shil'nikov, Quasi-hyperbolic attractors and lacunae (in Russian), Differentsial’'nye Urav-
neniya 11 (1981), 180-181.

M. A. Zaks and D. V. Lyubimov, 4 possible mechanism for accumulating bifurcations in a
finite-dimensional approximation of equations of convexity (in Russian), in Bifurcated transitions in
some problems of the theory of hydrodynamic stability, Sverdlovsk Institute of Continuum
Mechanics, Sverdlovsk, 1982, pp. 40-50.




