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On bifurcations of the Lorenz attractor
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Bifurcations of Lorenz-like attractors are studied in the Shimizu—~Morioka model. Two scenarios for their destruction
are suggested. The first is connected with the appearance of a lacuna, the second with a transition to a quasi-attractor. The

effects of codimension two bifurcations are considered.

1. Introduction
The Shimizu-Morioka model
X=y, y=x—Ay-—xz, i=—az+x*,

a, A>0, ¢))

is considered in which complex behavior of tra-
jectories has been discovered [1] by means of
computer simulation. These equations were put
forward in [1] as a model for studying the dy-
namics of the Lorenz system for large Rayleigh
number. Some physical applications of the model
were pointed out in [2]. It was shown in papers
[3,4] that there are two types of Lorenz-like
attractors in this model. The first is an orientable
Lorenz-like attractor and the second is non-
orientable containing a countable set of saddle
periodic orbits with negative multipliers.

Of special interest in this model is the fact that
the boundary of the region of existence of a
Lorenz-like attractor includes two codimension
two points (see fig. 1). The first is QO (a =0.608,
A=1.044) at which the saddle value o= —h; +
h, equals zero on the bifurcation curve [, corre-
sponding to the formation of the homoclinic

“figure-eight-butterfly” (here —h, <—-h, <0<
h, are eigenvalues of the origin).

The second point Q, (a=0.549, A=0.605)
corresponds to the vanishing of the so-called
separatrix value A (for details see [5]) on the
bifurcation curve /, corresponding to the forma-
tion of symmetric pair of double-circuit homo-
clinic loops I and I,. The curve /, is divided by
Q, into two components [, and [, which are
selected by conditions A>0 and A <0 respec-
tively. When crossing /5 (I, ) the saddle periodic
orbits born from loops I; and I, have their
invariant manifolds homeomorphic to a cylinder
(to a Mobius strip), respectively.

It was stated by Sil'nikov [6] that under some
additional restrictions on the eigenvalues of a
multi-dimensional saddle, there exist regions of
parameter values in neighbourhoods of such
points for which systems close to the symmetric
system with two homoclinic loops have a Lorenz-
like attractor*’. An appropriate Poincaré map
was shown in [6] to have a one-dimensional

*! In the case n =4 the appearance of a Lorenz-like attrac-
tor may also occur when the separatrices return along the
non-leading manifolds to the saddle tangential to each other

6.
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Fig. 1. A (a, A) bifurcation diagram of the Shimizu—-Morioka system. Bifurcation curves are explained in the text.

discontinuous map as a “normal form”. In some
small neighbourhood (in general depending on
o) of the point Q_ this map is of the form*?

x=(—p + Alx|' ") sgn(x) (2)

where p, <1, u, = o/hy,<1; and in neighbor-
hood of the point @, there is the form

x=(—p + po|x|” + |x]") sgn(x) , 3)

where p, = A<1,0<y=h,/h, <1 is the saddle
index, and » =min{2h,/h, h,/h,}. In papers
[3,8], an analysis of bifurcations near such points
was given and the main bifurcation curves were
extended into the («, A)-parameter plane for
egs. (1) by means of qualitative-numerical meth-
ods. It should be noted that map (2) was studied
there only for 0 < A <1 because the value of A
obtained numerically is approximately 0.81 at
Q,. Similar maps were also considered by
Lyubimov and Zaks [9], and Glendinning [10].

*2 This reduction can be made based on Robinson’s results
[7] on the existence of a smooth C'-filiation in the region of
the Lorenz-like attractor.

In the present paper the study of the Shimizu—
Morioka model is continued with a more de-
tailed analysis of bifurcations near one of the
branches of the boundary of the region of exist-
ence of the Lorenz-like attractor, where a transi-
tion to quasi-attractors is observed.

2. Bifurcations between points 0, and O,

The system (1) is invariant with respect to the
substitution (x, y, z)—(—x, -y, z). For a, A>
0, it possesses three equilibrium states: O =
(0,0,0) is a saddle of the type (2.1) i.e.
dmW,=2, dmWy=1, Wy;=IUOUIL,
where I and I, are one-dimensional separatrices
coming out from O as t—; 0, , = (xa'’%0,1)
are both either stable foci or saddle-foci of type
(1,2)*’. The boundary of stability of O, , is the

** We introduce a coding of separatrix I}. It is a sequence
() of units and zeros: “0” is written if I, goes around the
one-dimensional stable invariant manifold of equilibrium
state O,, “1” —~around O,. A coding (7) may be obtained
from (7) by the replacement: 1<>0. When I forms a homo-
clinic loop, the coding is finite and we shall use the notation
I'?. Analogously codings for periodic orbits are introduced.
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curve R:a=(2—-A?)/A. The characteristic
equation for O, , on R has a pair of pure imagi-
nary roots. It is well known that the character of
the bifurcation in such a case depends on the
sign of the first Lyapunov value Z,. Here Z, is
negative for « = 0.089.

The point @ divides [/, into the two com-
ponents /; and I] satisfying conditions o <0 and
o >0, respectively. Thus there are two cases in
the study of dynamics of the system (1) near /,.

The case o <0. For a, A lying above R equilib-
rium states O, and O,, are stable foci and attract
the separatrices I7 and I,. When crossing R
stable periodic orbits S, and S, are born from O,
and O,, respectively, and I and I, tend to them
(fig. 2a). The size of §, and S, grows as parame-
ters « and A approach /, and the become the
stable homoclinic figure-eight—butterfly on /; it-
self (fig. 2b). After passing through /; a stable
symmetric orbit M, appears (fig. 2¢). It is the
unique stable limit set in domain D,, of fig. 1.

The case o > (. The point Q_ is a limit point for
the curves in fig. 1 which correspond to:

I, and [% —the boundaries of the region of
existence of the Lorenz-like attractor (the curve
[ is indistinguishable from curve [, in fig. 1 and
is not separately labelled);

[{ - the appearance of a simple lacuna**;

[, — the formation of the double-circuit homo-
clinic loops I'}" and I'}’;

{; — a saddle-node bifurcation of periodic or-
bits involving S, and S,;

1, — a pitch—fork bifurcation of periodic orbits
involving M,.

** The spectral decomposition theorem [11] establishes
that the non-wandering set of Lorenz-like flows consists of
the Lorenz attractor and a set X =U} 3, where 3, is a
hyperbolic periodic orbit or a non-trivial hyperbolic set con-
jugate to a subshift of finite type. When the well-known
condition of complete dilation [5] is satisfied 3 is empty.
Otherwise, this is not the case. Each 3, is situated in a
so-called lacuna —a “hole” in the attractor. In our case, a
saddle symmetric figure-eight periodic orbit lies in a lacuna
(see fig. 3c).

(a) 3452
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b) 34z
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(c) 352
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Fig. 2. (a) Separatrices I} and I, are attracted by stable
periodic orbits S, and §,, respectively (a =0.8, A =1.0); (b)
a homoclinic figure-eight—-butterfly (o = 0.8, A =0.934); (c) a
stable symmetric periodic orbit M, (a =0.8, A =0.8).

Let us describe the evolution of limit sets in
the phase space of eqs. (1) when moving trans-
versely to these curves.

Along !] all the necessary conditions for the
Sil’nikov theorem are satisfied: the separatrices
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I and I, return to the origin 0 tangent to the
leading direction (the z-axis) and the separatrix
value A is positive. Therefore, after crossing /;
towards domain D, ,, saddle periodic orbits C,
and C, are born from the homoclinic figure-
eight-butterfly together with a limit set (2 such
that system (1) on it is homeomorphic to a
suspension over the Bernoulli shift on two sym-
bols [S]. Above I} this set is non-attracting, and
so I} and I tend either to the stable foci O, and
O, (above the curve R) or to the stable periodic
orbits §, and §; (below the curve R) (fig. 3a).
The set {2, becomes the Lorenz-like attractor
after crossing /, on which I, € Wi and I, € W,
(fig. 3b), where WSCI‘2 are the two-dimensional
stable invariant manifolds of C,,. There exist
three attractors in the region between I, and /;.
The first one is the Lorenz-like attractor, the two

(SRR

-2%0 280

others are either O, , or S, , above and below
the curve R, respectively. On [/, the stable per-
iodic orbits S, , coalesce in pairs with the saddle
orbits C; , and disappear. In the domain D , the
Lorenz-like attractor is the unique stable set and
consists of one connected component.

Let us now consider an evolution of the
Lorenz-like attractor when moving from domain
D, , to D,, through I}, 1,,[%,1,. It was noted
above that the separatrix value A is positive and
less than unity. Therefore, a bifurcation in which
a lacuna appears will precede the destruction of
the Lorenz-like attractor. The lacuna arises when
I' , lie on the stable manifold of a symmetric
saddle periodic orbit G,. Fig. 3c shows the (x~
z)-projection of the Lorenz-like attractor with
the simple lacuna containing no non-wandering
orbits except for G,. When crossing /, the orbit
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Fig. 3. (a) The separatrix I tends to a stable periodic orbit S, (a =0.35, A =1.24); (b) the moment of the appearance of a
Lorenz-like attractor: I lies on the stable invariant manifold of the saddle periodic orbit C, (a =0.2, A =1.33); (c) a Lorenz-like
attractor with a simple lacuna containing no non-wandering set except a saddle symmetric periodic orbit G, (a =0.5, A =0.85);

(d) a double-circuit homoclinic loop I'%" (a =0.928, A = 0.555).
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G, inside the lacuna bifurcates into three: the
stable symmetric periodic orbit M, and two sad-
dle non-symmetric periodic orbits KJ' and K2’
The last determine the boundary of the basin of
M,. The Lorenz-like attractor disappears after
crossing /5 on which there are the inclusions
I, e W(K>') and I, € W¥(K}°). The difference
between bifurcations on /% and £} is only that on
I3 the non-symmetric double-circuit periodic or-
bits K" and K)° play the role of the simple
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periodic orbits C, and C,. To the right of /2 the
separatrices I, and I, are attracted to the stable
periodic orbit M,. On I,, K}' and K’ become
the homoclinic loops I'?" and I'}° (fig. 3d).

The bifurcation sequence becomes slightly
more complicated if we go from D, to D,
through L, I3, 1,, I;. On [, the stable symmetric
periodic orbit M, loses its stability, being divided
into the saddle periodic orbit G, and two stable
non-symmetric ones NJ' and N.° having the

(d)

© ’l z
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Mz
(M)
0 R X
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Fig. 4. Heteroclinic contours at the codimension two points (a) Q% (« =0.316, A =0.699); (b) Q2 (a =0.3, A =0.660); (¢} Q3
(@ =0.390, A=0.781); (d) a homoclinic loop to the saddle-focus O, (a*=0.23368867, A =0.7); (¢) a heteroclinic contour
between saddle-foci O, and O, (@ = a* +0.23 x 107> A=0.7); (f) a homoclinic loop I'"" (a =0.476, A =0.723.
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same shapes as K| and K}°, respectively. After
crossing [ there exist already five periodic orbits
G,, N, 5, K, , in the lacuna. On /5 non-symmetric
orbits coalesce in pairs into two non-rough orbits
of saddle—node type and disappear. The curve /
starts from the codimension two point Q, at
which the Lyapunov value ¢, equals zero on /,.
(Neither Q, nor [ are included in fig. 1).

Notice the following bifurcation curves orig-
inating from Q,:

I3 and I3 are the boundaries of the region of
existence of the Lorenz-like attractor. On
I3, T, (T;) belongs to a stable invariant manifold
of the saddle non-symmetric periodic orbits with
the coding: (1001) ((0110));

on IZ, I, tend to the saddle symmetric per-
iodic orbits G, with the coding (0110). It is a
moment when a second lacuna appears.

ls and I, correspond to the formation of homo-
clinic loops with codings (0110) and (0101), re-
spectively;

l, corresponds to two non-rough non-symmet-
ric periodic orbits N, , with multipliers equal to
-1.

The curves [, and [, are remarkable in that
they are spirals winding to the points Q3 and
Q3 respectively. Both these points belong to a
codimension two set and correspond to the for-
mation of heteroclinic contours that have been
studied in [12,13] (fig. 4a,b). It follows from [12]
that there exists a countable set of points similar
to Q3 accumulating at the point QL (a=
0.3903, A =7807) (fig. 4c). All points of this set
lie in a domain bordered by the curves /i and /¢
(in fig. 1 curves /. and /g are indistinguishable
because dist(ly, [z:) ~ 107*). The curve /, corre-
sponds to the formation of homoclinic loops to
saddle-foci O, , (fig. 4d) and /i to a heteroclinic
contour including both O, and O, (fig. 4e).
These curves terminate at the point Q. The
curve I; winds into Qy, and on it there are
homoclinic loops with codings (011) and (100)
(fig. 4f). According to [12], on [, there exists a
countable set {Q’,} of points at each of which
the separatrix value A vanishes. These points are

Fig. 5. First return map for the plane II = II, U IL,. Trajec-
tories started within II, and I, next strike the plane within
the shaded area for parameters a, A (a) above and (b) below
the curve /,_, in fig. 1.

the ones of an intersection of [; with the curve
1, _,, which goes through Q1 and finishes at Q ,.
On [ ,_, a change of sign of the separatrix value
A occurs, that is geometrically accompanied by
the formation of distinctive “bends” in the Poin-
caré map (see fig. 5).

3. Boundary between Lorenz attractor and
quasi-attractor

Obviously, behavior of orbits of egs. (1) on
!, _o depends on the sign of the value v — 1 (see
(3)). In our case v =2y. Thus I ,_, is divided by
the point Q,,, into two components defined by
conditions y <1/2 and vy > 1/2. The bifurcations
occurring when passing through the left branch
are the same ones as in the Lorenz model [14].
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Namely, structurally unstable homoclinic orbits
arise below [, _, that cause stable periodic orbits
to appear in the attractor of system (1). Such
complex limit sets are quasi-attractors in the
terminology of [11,15].

For y <1/2, the region of existence of the
Lorenz-like attractor adjoins the curve [,_,, but
this is not the case for y > 1/2. Here dynamics of
the system (1) is well modelled by the map

x=(=py + |x) sgn(x) (4)

but not only for small x. Such a map was consid-
ered by Arneodo, Coullet and Tresser [16] and
Lyubimov and Zaks [9]. It was stated in these
papers that if the homoclinic loops with coding
() (and therefore symmetric to them loops with
a coding (7)) exist for some value p,, then a
sequence pry < g, <, <-'--<pu, exists such
that: ‘

(i) for u =, a pair of homoclinic (,)-and
(,)-loops exists where
M=T, Wy =TT, ; (&)

i

(i) for p, < u < u) a stable symmetric period-
ic (mr,,,)-orbit exists which loses its stability at
B=pw:<p,,. A pair of non-symmetric stable
(a1, ,)-orbits bifurcate off from it at u};

(iti) at p =, these orbits become homo-
clinic (m;7,)- and (7, #,)-loops, respectively. On
further increasing u a stable symmetric
(m, 7,7 m)-orbit is born from this homoclinic
figure eight.

Thus the selected bifurcations of “period-
doubling” of the loops are analogous to a
Feigenbaum cascade. At p = y, the closure of
the separatrices is a Feigenbaum-like set. Under
this construction each u, corresponds to a homo-
clinic figure-eight—butterfly with vanishing
separatrix value A. Analysis of map (3) shows
that a bundle of bifurcation curves originates
from each such point. We select the following
curves to mention here (see fig. 6): [, —a for-
mation of loops with codings ; and 7;;

ITiy — the first boundary of the region of exist-
ence of the Lorenz-like attractor. The coding of
the separatrix I is m,(7;)” on it;

[7i—a saddle-node bifurcation of non-
symmetric periodic orbits;

[T’ — an appearance of a lacuna on a symmetric
periodic orbit with coding ;7;;

I3t ~ a subcritical pitch—fork bufurcation of the
periodic ;7r;-orbit;

I7ix1 ~ the second boundary of the region of
existence of the Lorenz-like attractor (the
separatrix I has a coding w,(#,7;)" here);

Lorenz-like attractor with (i + 1) lacunae

LA with

LA with (¢ +2) lacunae

(i + 3) lacunae

£

:318

-
N

eﬂ’"—l

£A=

M+2//#2+1/Li+y :

Fig. 6. The structure of the boundary of the region of existence of a Lorenz-like attractor near the curve {,_,.
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[, —an existence of double-circuit homo-
clinic ;7,- and 7, r,-loops.

It is necessary to fit these bundles together —
“to play a bifurcation patience” by Sil’nikov’s
expression. The simplest variant is presented in
fig. 6. Here, there are points Q7 where the

345

Lyapunov values equal zero. To the left of each
such point there is a supercritical pitch—fork
bifurcation. The curves IT7 and [, o TS
(01), m,,, = (0110), in fig. 6 are I} andl in fig.
1, respectively. Thus, the boundary of the region
of existence of a Lorenz-like attractor is the

X
2 2
(b) 11X
i
0 = iy Xk
F LN A B Sty o o g Bt e e e e —r 1t
-1 . 1

/

/

/ -1

Fig. 7. (a) A non-symmetric quasi-attractor for egs. (1), and (b) corresponding to the one-dimensional return map.
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union of arches of /T%' under all admissible
codings =;. Note that the mechanism of destroy-
ing the Lorenz-like attractor realized in the do-
main between u; and y, , is analogous to the one
that is considered above for the domain between
Q,and Q,.

As stated in [8], narrow sectors of existence of
the non-orientable Lorenz attractors adjoin to
each point w, from the domain where A4 <0.
However, attractors are more typically quasi-
attractors in this domain. The period-doubling
bifurcation for periodic orbits N' and N’ is the
first bifurcation in a cascade of period-doublings
leading to the formation of two non-symmetric
quasi-attractors. Fig. 7a shows the (x—z)-projec-
tion of the “right” quasi-attractor for a =0.45,
A =0.555. When increasing the parameter A both
quasi-attractors unite into a single unique sym-
metric quasi-attractor. It is easy to understand
this phenomenon by considering the Poincaré
map. The strong contraction causes this map to
be extremely close to some one-dimensional dis-
continuous map. Fig. 7b represents the graph of
this map obtained numerically for « =0.45, A =
0.555. One can see that the uniting of quasi-
attractors occurs when extrema of the graph lie
on the x-axis.
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Note added

More details on the behaviour of the Shimizu-~
Morioka model can be found in the independent
work of A.M. Rucklidge [17].
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