On bifurcations of the Lorenz attractor in the Shimizu-Morioka model

Andrey L. Shil'nikov
Department of Mathematics, Institute of Transport Engineers, Nesterova 5, Nizhny Novgorod 603005, Russian Federation

Abstract

Bifurcations of Lorenz-like attractors are studied in the Shimizu-Morioka model. Two scenarios for their destruction are suggested. The first is connected with the appearance of a lacuna, the second with a transition to a quasi-attractor. The effects of codimension two bifurcations are considered.

1. Introduction

The Shimizu-Morioka model

$$
\begin{align*}
& \dot{x}=y, \quad \dot{y}=x-\lambda y-x z, \quad \dot{z}=-\alpha z+x^{2}, \\
& \quad \alpha, \lambda>0, \tag{1}
\end{align*}
$$

is considered in which complex behavior of trajectories has been discovered [1] by means of computer simulation. These equations were put forward in [1] as a model for studying the dynamics of the Lorenz system for large Rayleigh number. Some physical applications of the model were pointed out in [2]. It was shown in papers $[3,4]$ that there are two types of Lorenz-like attractors in this model. The first is an orientable Lorenz-like attractor and the second is nonorientable containing a countable set of saddle periodic orbits with negative multipliers.

Of special interest in this model is the fact that the boundary of the region of existence of a Lorenz-like attractor includes two codimension two points (see fig. 1). The first is $Q_{\sigma}(\alpha \simeq 0.608$, $\lambda \simeq 1.044$) at which the saddle value $\sigma=-h_{1}+$ h_{3} equals zero on the bifurcation curve l_{1} corresponding to the formation of the homoclinic
"figure-eight-butterfly" (here $-h_{1}<-h_{1}<0<$ h_{3} are eigenvalues of the origin).

The second point $Q_{A}(\alpha=0.549, \lambda=0.605)$ corresponds to the vanishing of the so-called separatrix value A (for details see [5]) on the bifurcation curve l_{2} corresponding to the formation of symmetric pair of double-circuit homoclinic loops Γ_{1} and Γ_{2}. The curve l_{2} is divided by Q_{A} into two components l_{2}^{+}and l_{2}^{-}which are selected by conditions $A>0$ and $A<0$ respectively. When crossing $l_{2}^{+}\left(l_{2}^{-}\right)$the saddle periodic orbits born from loops Γ_{1} and Γ_{2} have their invariant manifolds homeomorphic to a cylinder (to a Möbius strip), respectively.

It was stated by Sil'nikov [6] that under some additional restrictions on the eigenvalues of a multi-dimensional saddle, there exist regions of parameter values in neighbourhoods of such points for which systems close to the symmetric system with two homoclinic loops have a Lorenzlike attractor ${ }^{\# 1}$. An appropriate Poincaré map was shown in [6] to have a one-dimensional

[^0]

Fig. 1. A (α, λ) bifurcation diagram of the Shimizu-Morioka system. Bifurcation curves are explained in the text.
discontinuous map as a "normal form". In some small neighbourhood (in general depending on σ) of the point Q_{σ} this map is of the form*2
$x=\left(-\mu_{1}+A|x|^{1-\mu_{2}}\right) \operatorname{sgn}(x)$,
where $\mu_{1} \ll 1, \mu_{2}=\sigma / h_{3} \ll 1$; and in neighborhood of the point Q_{A} there is the form
$x=\left(-\mu_{1}+\mu_{2}|x|^{\gamma}+|x|^{\nu}\right) \operatorname{sgn}(x)$,
where $\mu_{2}=A \ll 1,0<\gamma=h_{1} / h_{3}<1$ is the saddle index, and $\nu=\min \left\{2 h_{1} / h_{3}, h_{2} / h_{3}\right\}$. In papers [3,8], an analysis of bifurcations near such points was given and the main bifurcation curves were extended into the (α, λ)-parameter plane for eqs. (1) by means of qualitative-numerical methods. It should be noted that map (2) was studied there only for $0<A<1$ because the value of A obtained numerically is approximately 0.81 at Q_{g}. Similar maps were also considered by Lyubimov and Zaks [9], and Glendinning [10].

[^1]In the present paper the study of the ShimizuMorioka model is continued with a more detailed analysis of bifurcations near one of the branches of the boundary of the region of existence of the Lorenz-like attractor, where a transition to quasi-attractors is observed.

2. Bifurcations between points Q_{σ} and Q_{A}

The system (1) is invariant with respect to the substitution $(x, y, z) \rightarrow(-x,-y, z)$. For $\alpha, \lambda>$ 0 , it possesses three equilibrium states: $\mathrm{O}=$ $(0,0,0)$ is a saddle of the type (2.1) i.e. $\operatorname{dim} W_{0}^{\mathrm{s}}=2, \quad \operatorname{dim} W_{0}^{\mathrm{u}}=1, \quad W_{0}^{\mathrm{u}}=\Gamma_{1} \cup O \cup \Gamma_{2}$ where Γ_{1} and Γ_{2} are one-dimensional separatrices coming out from O as $t \rightarrow \infty ; O_{1,2}=\left(\pm \alpha^{1 / 2}, 0,1\right)$ are both either stable foci or saddle-foci of type $(1,2)^{\# 3}$. The boundary of stability of $O_{1,2}$ is the

[^2]curve $R: \alpha=\left(2-\lambda^{2}\right) / \lambda$. The characteristic equation for $O_{1,2}$ on R has a pair of pure imaginary roots. It is well known that the character of the bifurcation in such a case depends on the sign of the first Lyapunov value Z_{1}. Here Z_{1} is negative for $\alpha \geq 0.089$.

The point Q_{σ} divides l_{1} into the two components l_{1}^{-}and l_{1}^{+}satisfying conditions $\sigma<0$ and $\sigma>0$, respectively. Thus there are two cases in the study of dynamics of the system (1) near l_{1}.

The case $\sigma<0$. For α, λ lying above R equilibrium states O_{1} and O_{2}, are stable foci and attract the separatrices Γ_{1} and Γ_{2}. When crossing R stable periodic orbits S_{1} and S_{2} are born from O_{1} and O_{2}, respectively, and Γ_{1} and Γ_{2} tend to them (fig. 2a). The size of S_{1} and S_{2} grows as parameters α and λ approach l_{1}^{-}and the become the stable homoclinic figure-eight-butterfly on l_{1}^{-}itself (fig. 2b). After passing through l_{1}^{-}a stable symmetric orbit M_{1} appears (fig. 2c). It is the unique stable limit set in domain D_{M} of fig. 1 .

The case $\sigma>0$. The point Q_{σ} is a limit point for the curves in fig. 1 which correspond to:
l_{A}^{1} and l_{A}^{2} - the boundaries of the region of existence of the Lorenz-like attractor (the curve l_{A}^{2} is indistinguishable from curve l_{2} in fig. 1 and is not separately labelled);
l_{L}^{1} - the appearance of a simple lacuna ${ }^{\# 4}$;
l_{2} - the formation of the double-circuit homoclinic loops Γ_{1}^{01} and Γ_{2}^{10};
l_{3} - a saddle-node bifurcation of periodic orbits involving S_{1} and S_{2};
l_{4} - a pitch-fork bifurcation of periodic orbits involving M_{1}.

[^3]

Fig. 2. (a) Separatrices Γ_{1} and Γ_{2} are attracted by stable periodic orbits S_{1} and S_{2}, respectively ($\alpha \simeq 0.8, \lambda \simeq 1.0$); (b) a homoclinic figure-eight-butterfly ($\alpha \simeq 0.8, \lambda \approx 0.934$); (c) a stable symmetric periodic orbit $M_{1}(\alpha \approx 0.8, \lambda \approx 0.8)$.

Let us describe the evolution of limit sets in the phase space of eqs. (1) when moving transversely to these curves.

Along l_{1}^{+}all the necessary conditions for the Šil'nikov theorem are satisfied: the separatrices
Γ_{1} and Γ_{2} return to the origin 0 tangent to the leading direction (the z-axis) and the separatrix value A is positive. Therefore, after crossing l_{1}^{+} towards domain $D_{\text {LA }}$, saddle periodic orbits C_{1} and C_{2} are born from the homoclinic figure-eight-butterfly together with a limit set Ω_{B} such that system (1) on it is homeomorphic to a suspension over the Bernoulli shift on two symbols [5]. Above l_{A}^{1} this set is non-attracting, and so Γ_{1} and Γ_{2} tend either to the stable foci O_{2} and O_{1} (above the curve R) or to the stable periodic orbits S_{2} and S_{1} (below the curve R) (fig. 3a). The set Ω_{B} becomes the Lorenz-like attractor after crossing l_{A}^{1} on which $\Gamma_{1} \in W_{C_{2}}^{s}$ and $\Gamma_{2} \in W_{C_{1}}^{\mathrm{s}}$ (fig. 3b), where $W_{C_{1,2}}^{\mathrm{s}}$ are the two-dimensional stable invariant manifolds of $C_{1,2}$. There exist three attractors in the region between l_{A}^{i} and l_{3}. The first one is the Lorenz-like attractor, the two

others are either $O_{1,2}$ or $S_{1,2}$ above and below the curve R, respectively. On l_{3} the stable periodic orbits $S_{1,2}$ coalesce in pairs with the saddle orbits $C_{1,2}$ and disappear. In the domain $D_{\text {LA }}$ the Lorenz-like attractor is the unique stable set and consists of one connected component.

Let us now consider an evolution of the Lorenz-like attractor when moving from domain D_{LA} to D_{M} through $l_{\mathrm{L}}^{1}, l_{4}, l_{\mathrm{A}}^{2}, l_{2}$. It was noted above that the separatrix value A is positive and less than unity. Therefore, a bifurcation in which a lacuna appears will precede the destruction of the Lorenz-like attractor. The lacuna arises when $\Gamma_{1,2}$ lie on the stable manifold of a symmetric saddle periodic orbit G_{1}. Fig. 3c shows the (x z)-projection of the Lorenz-like attractor with the simple lacuna containing no non-wandering orbits except for G_{1}. When crossing l_{4} the orbit

Fig. 3. (a) The separatrix Γ_{1} tends to a stable periodic orbit S_{2} ($\alpha \simeq 0.35, \lambda \approx 1.24$); (b) the moment of the appearance of a Lorenz-like attractor: Γ_{1} lies on the stable invariant manifold of the saddle periodic orbit C_{2} ($\alpha \simeq 0.2, \lambda \simeq 1.33$); (c) a Lorenz-like attractor with a simple lacuna containing no non-wandering set except a saddle symmetric periodic orbit $G_{1}(\alpha \approx 0.5, \lambda \approx 0.85)$; (d) a double-circuit homoclinic loop $\Gamma_{\mathrm{L}}^{01}(\alpha \simeq 0.928, \lambda \simeq 0.555)$.
G_{1} inside the lacuna bifurcates into three: the stable symmetric periodic orbit M_{1} and two saddle non-symmetric periodic orbits K_{1}^{01} and K_{2}^{10}. The last determine the boundary of the basin of M_{1}. The Lorenz-like attractor disappears after crossing l_{A}^{2} on which there are the inclusions $\Gamma_{1} \in W^{\mathrm{s}}\left(K_{2}^{01}\right)$ and $\Gamma_{2} \in W^{\mathrm{s}}\left(K_{1}^{10}\right)$. The difference between bifurcations on l_{A}^{2} and l_{A}^{1} is only that on l_{A}^{2} the non-symmetric double-circuit periodic orbits K_{1}^{01} and K_{2}^{10} play the role of the simple

Fig. 4. Heteroclinic contours at the codimension two points (a) Q_{B}^{2} ($\alpha \simeq 0.316, \lambda \simeq 0.699$); (b) Q_{B}^{3} ($\alpha \simeq 0.3, \lambda \simeq 0.660$); (c) Q_{B}^{1} ($\alpha \approx 0.390, \lambda \approx 0.781$); (d) a homoclinic loop to the saddle-focus $O_{1}\left(a^{*} \simeq 0.23368867, \lambda \approx 0.7\right.$); (e) a heteroclinic contour between saddle-foci O_{1} and $O_{2}\left(\alpha \simeq \alpha^{*}+0.23 \times 10^{-5}, \lambda \simeq 0.7\right)$; (f) a homoclinic loop $\Gamma_{1}^{011}(\alpha \approx 0.476, \lambda \approx 0.723$.
same shapes as K_{1}^{01} and K_{2}^{10}, respectively. After crossing l_{A}^{2} there exist already five periodic orbits $G_{1}, N_{1,2}, K_{1,2}$ in the lacuna. On l_{5} non-symmetric orbits coalesce in pairs into two non-rough orbits of saddle-node type and disappear. The curve l_{5} starts from the codimension two point Q_{ζ} at which the Lyapunov value ζ_{2} equals zero on l_{4}. (Neither Q_{ζ} nor l_{s} are included in fig. 1).

Notice the following bifurcation curves originating from Q_{A} :
l_{A}^{2} and l_{A}^{3} are the boundaries of the region of existence of the Lorenz-like attractor. On $l_{\mathrm{A}}^{3}, \Gamma_{1}\left(\Gamma_{2}\right)$ belongs to a stable invariant manifold of the saddle non-symmetric periodic orbits with the coding: (1001) ((0110));
on $l_{L}^{2}, \Gamma_{1,2}$ tend to the saddle symmetric periodic orbits G_{2} with the coding (0110). It is a moment when a second lacuna appears.
l_{6} and l_{7} correspond to the formation of homoclinic loops with codings (0110) and (0101), respectively;
l_{9} corresponds to two non-rough non-symmetric periodic orbits $N_{1,2}$ with multipliers equal to -1 .
The curves l_{6} and l_{7} are remarkable in that they are spirals winding to the points Q_{B}^{2} and Q_{B}^{3}, respectively. Both these points belong to a codimension two set and correspond to the formation of heteroclinic contours that have been studied in [12,13] (fig. 4a,b). It follows from [12] that there exists a countable set of points similar to $Q_{\mathrm{B}}^{2,3}$ accumulating at the point $Q_{\mathrm{B}}^{1}(\alpha \approx$ $0.3903, \lambda \simeq 7807$) (fig. 4c). All points of this set lie in a domain bordered by the curves l_{F} and l_{FF} (in fig. 1 curves l_{F} and l_{FF} are indistinguishable because $\left.\operatorname{dist}\left(l_{\mathrm{F}}, l_{\mathrm{FF}}\right) \sim 10^{-4}\right)$. The curve l_{F} corresponds to the formation of homoclinic loops to saddle-foci $O_{1,2}$ (fig. 4 d) and $l_{\text {FF }}$ to a heteroclinic contour including both O_{1} and O_{2} (fig. 4e). These curves terminate at the point Q_{B}^{1}. The curve l_{8} winds into Q_{B}^{1}, and on it there are homoclinic loops with codings (011) and (100) (fig. 4f). According to [12], on l_{8} there exists a countable set $\left\{Q_{A}^{i}\right\}$ of points at each of which the separatrix value A vanishes. These points are

Fig. 5. First return map for the plane $\Pi=\Pi_{1} \cup \Pi_{2}$. Trajectories started within Π_{1} and Π_{2} next strike the plane within the shaded area for parameters α, λ (a) above and (b) below the curve $l_{A=0}$ in fig. 1 .
the ones of an intersection of l_{8} with the curve $l_{A=0}$, which goes through Q_{B}^{1} and finishes at Q_{A}. On $l_{A=0}$ a change of sign of the separatrix value A occurs, that is geometrically accompanied by the formation of distinctive "bends" in the Poincaré map (see fig. 5).

3. Boundary between Lorenz attractor and quasi-attractor

Obviously, behavior of orbits of eqs. (1) on $l_{A=0}$ depends on the sign of the value $\nu-1$ (see (3)). In our case $\nu=2 \gamma$. Thus $l_{A=0}$ is divided by the point $Q_{1 / 2}$ into two components defined by conditions $\gamma<1 / 2$ and $\gamma>1 / 2$. The bifurcations occurring when passing through the left branch are the same ones as in the Lorenz model [14].

Namely, structurally unstable homoclinic orbits arise below $l_{A=0}$ that cause stable periodic orbits to appear in the attractor of system (1). Such complex limit sets are quasi-attractors in the terminology of $[11,15]$.

For $\gamma<1 / 2$, the region of existence of the Lorenz-like attractor adjoins the curve $l_{A=0}$, but this is not the case for $\gamma>1 / 2$. Here dynamics of the system (1) is well modelled by the map
$x=\left(-\mu_{1}+|x|^{2 \gamma}\right) \operatorname{sgn}(x)$,
but not only for small x. Such a map was considered by Arneodo, Coullet and Tresser [16] and Lyubimov and Zaks [9]. It was stated in these papers that if the homoclinic loops with coding (π) (and therefore symmetric to them loops with a coding ($\bar{\pi}$)) exist for some value μ_{0}, then a sequence $\mu_{0}<\mu_{1}<\mu_{2}<\cdots<\mu_{\infty}$ exists such that:
(i) for $\mu=\mu_{i}$ a pair of homoclinic $\left(\pi_{i}\right)$-and ($\bar{\pi}_{i}$)-loops exists where
$\pi_{0}=\pi, \quad \pi_{i+1}=\pi_{i} \bar{\pi}_{i} ;$
(ii) for $\mu_{i}<\mu<\mu_{i}^{\prime}$ a stable symmetric periodic (π_{i+1})-orbit exists which loses its stability at $\mu=\mu_{i}^{\prime}<\mu_{i+1}$. A pair of non-symmetric stable $\left(\pi_{i+1}\right)$-orbits bifurcate off from it at μ_{i}^{\prime};
(iii) at $\mu=\mu_{i+1}$ these orbits become homoclinic $\left(\pi_{i} \bar{\pi}_{i}\right)$ - and ($\bar{\pi}_{i} \pi_{i}$)-loops, respectively. On further increasing μ a stable symmetric $\left(\pi_{i} \bar{\pi}_{i} \bar{\pi}_{i} \pi_{i}\right)$-orbit is born from this homoclinic figure eight.

Thus the selected bifurcations of "perioddoubling" of the loops are analogous to a Feigenbaum cascade. At $\mu=\mu_{0}$ the closure of the separatrices is a Feigenbaum-like set. Under this construction each μ_{i} corresponds to a homoclinic figure-eight-butterfly with vanishing separatrix value A. Analysis of map (3) shows that a bundle of bifurcation curves originates from each such point. We select the following curves to mention here (see fig. 6): $l_{\pi_{i}}-$ a formation of loops with codings π_{i} and $\bar{\pi}_{i}$;
$l_{\text {LA }}^{\pi_{i}}$ - the first boundary of the region of existence of the Lorenz-like attractor. The coding of the separatrix Γ_{1} is $\pi_{i}\left(\bar{\pi}_{i}\right)^{\infty}$ on it;
$l_{\mathrm{sn}}^{\pi_{i}}$-a saddle-node bifurcation of nonsymmetric periodic orbits;
$l_{\mathrm{L}}^{\pi_{i}}$ - an appearance of a lacuna on a symmetric periodic orbit with coding $\pi_{i} \bar{\pi}_{i}$;
$l_{\mathrm{pf}}^{\pi_{i}}$ - a subcritical pitch-fork bufurcation of the periodic $\pi_{i} \bar{\pi}_{i}$-orbit;
$l_{\mathrm{LA}}^{\pi_{i+1}}$ - the second boundary of the region of existence of the Lorenz-like attractor (the separatrix Γ_{1} has a coding $\pi_{i}\left(\bar{\pi}_{i} \pi_{i}\right)^{\infty}$ here $)$;

Lorenz-like attractor with $(i+1)$ lacunae

Fig. 6. The structure of the boundary of the region of existence of a Lorenz-like attractor near the curve $t_{A=0}$.
$l_{\pi_{i+1}}$-an existence of double-circuit homoclinic $\pi_{i} \bar{\pi}_{i}$ - and $\bar{\pi}_{i} \pi_{i}$-loops.
It is necessary to fit these bundles together "to play a bifurcation patience" by Šil'nikov's expression. The simplest variant is presented in fig. 6. Here, there are points $Q_{Z}^{\pi_{i}}$ where the

Lyapunov values equal zero. To the left of each such point there is a supercritical pitch-fork bifurcation. The curves $l_{\mathrm{L}}^{\pi_{i}}$ and $l_{\pi_{i+1}}, \pi_{i}=$ (01), $\pi_{i+1}=(0110)$, in fig. 6 are l_{L}^{2} and l_{6} in fig. 1 , respectively. Thus, the boundary of the region of existence of a Lorenz-like attractor is the

Fig. 7. (a) A non-symmetric quasi-attractor for eqs. (1), and (b) corresponding to the one-dimensional return map.
union of arches of $l_{\mathrm{LA}}^{\pi_{i+1}}$ under all admissible codings π_{i}. Note that the mechanism of destroying the Lorenz-like attractor realized in the domain between μ_{i} and μ_{i+1} is analogous to the one that is considered above for the domain between Q_{σ} and Q_{A}.

As stated in [8], narrow sectors of existence of the non-orientable Lorenz attractors adjoin to each point μ_{i} from the domain where $A<0$. However, attractors are more typically quasiattractors in this domain. The period-doubling bifurcation for periodic orbits N_{1}^{01} and N_{2}^{10} is the first bifurcation in a cascade of period-doublings leading to the formation of two non-symmetric quasi-attractors. Fig. 7 a shows the $(x-z)$-projection of the "right" quasi-attractor for $\alpha=0.45$, $\lambda=0.555$. When increasing the parameter λ both quasi-attractors unite into a single unique symmetric quasi-attractor. It is easy to understand this phenomenon by considering the Poincaré map. The strong contraction causes this map to be extremely close to some one-dimensional discontinuous map. Fig. 7b represents the graph of this map obtained numerically for $\alpha=0.45, \lambda=$ 0.555 . One can see that the uniting of quasiattractors occurs when extrema of the graph lie on the x-axis.

Acknowledgements

I wish to thank Leonid P. Šil'nikov and Dima Turaev for many useful discussions and Colin Sparrow for helpful cooperation.

Note added

More details on the behaviour of the ShimizuMorioka model can be found in the independent work of A.M. Rucklidge [17].

References

[1] T. Shimizu and N. Morioka, Phys. Lett. A76 (1980) 201.
[2] A. Rucklidge, Poster NATO Adv. Res. Workshop in Brussels (1991).
[3] A.L. Šil'nikov, Sel. Math. Sov. 10 (1991) 105 (originally published in: Methods of Qualitative Theory of Differential Equations, Gorky St. Univ. (1986), p. 180).
[4] A.L. Šil'nikov, Methods of Qualitative Theory and Theory of Bifurcations, Gorky St. Univ. (1989), p. 130.
[5] V.S. Afraimovich, VV. Bykov and L.P. Šil'nikov, Trans. Moscow Math. Soc. 2 (1983) 153.
[6] L.P. Šil'nikov, Usp. Math. Nauk. 36 (1981) 240 (Russ. Math. Surv. in English).
[7] C. Robinson, Nonlinearity 2 (1989) 495.
[8] A.L. Šil'nikov, Ph.D. Thesis, University of Gorky (1990).
[9] D.V. Lyubimov and M.A. Zaks, Physica D9 (1983) 52.
[10] P. Glendinning, Phys. Letters A 121 (1987) 411.
[11] V.S. Afraimovich and L.P. Šil'nikov, Nonlinear Dynamics and Turbulence (Pittman, New York, 1983), p. 1.
[12] V.V. Bykov, Meth. Qual. Theory Dynam. System (1980) (in Russian) p. 44-72.
[13] P. Glendinning and C. Sparrow, J. Stat. Phys. 43 (1986) 479.
[14] V.V. Bykov and A.L. Šil'nikov, Sel. Math. Sov., to appear (originally published in :Methods of Qualitative Theory and Theory of Bifurcations, Gorky St. Univ. (1989), p. 151).
[15] L.P. Šil'nikov, Diff. Eq. 17 (1981) 2105 (in Russian).
[16] A. Arneodo, P. Coullet and C. Tresser, Phys. Lett. A 81 (1981) 197.
[17] A.M. Rucklidge, Physica D 62 (1993) 323, these Proceedings.

[^0]: *1 In the case $n \geq 4$ the appearance of a Lorenz-like attractor may also occur when the separatrices return along the non-leading manifolds to the saddle tangential to each other [6].

[^1]: *2 This reduction can be made based on Robinson's results [7] on the existence of a smooth C^{1}-filiation in the region of the Lorenz-like attractor.

[^2]: ${ }^{* 3}$ We introduce a coding of separatrix Γ_{1}. It is a sequence (π) of units and zeros: " 0 " is written if Γ_{1} goes around the one-dimensional stable invariant manifold of equilibrium state O_{1}, " 1 " - around O_{2}. A coding ($\bar{\pi}$) may be obtained from (π) by the replacement: $1 \Leftrightarrow 0$. When Γ_{i} forms a homoclinic loop, the coding is finite and we shall use the notation Γ_{i}^{n}. Analogously codings for periodic orbits are introduced.

[^3]: *4 The spectral decomposition theorem [11] establishes that the non-wandering set of Lorenz-like flows consists of the Lorenz attractor and a set $\Sigma=\cup_{i=0}^{N} \Sigma_{i}$, where Σ_{i} is \dot{a} hyperbolic periodic orbit or a non-trivial hyperbolic set conjugate to a subshift of finite type. When the well-known condition of complete dilation [5] is satisfied Σ is empty. Otherwise, this is not the case. Each Σ_{i} is situated in a so-called lacuna-a "hole" in the attractor. In our case, a saddle symmetric figure-eight periodic orbit lies in a lacuna (see fig. 3c).

