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Abstract. We show that the blue sky catastrophe, which creates a stable
periodic orbit whose length increases with no bound, is a typical phenomenon
for singularly-perturbed (multi-scale) systems with at least two fast variables.
Three distinct mechanisms of this bifurcation are described. We argue that it
is behind a transition from periodic spiking to periodic bursting oscillations.

1. Stability boundaries for periodic orbits

Stable periodic orbits play a very special role in nonlinear dynamics. One of
the basic questions here concerns the structure of the boundaries of their stability
regions in the parameter space. Namely, suppose that a time-continuous dynamical
system exhibits sustainable self-oscillations, i.e. has a stable periodic orbit. One
may wonder how the periodic orbits evolves as the parameters of the system vary?
In other words, consider a one-parameter family Xµ of dynamical systems with an
exponentially stable periodic orbit at some µ. This periodic orbit will persist and
remain stable within some interval of the parameter values. What is the boundary
of this interval? Which type of bifurcation will it correspond to in a typical one-
parameter family?

These questions gave an original impulse to the development of bifurcation theory
in the pioneering works by Andronov and Leontovich [1] (see also [2]) who had
discovered the following four codimension-1 boundaries of stability of limit cycles
for systems of ODE’s on a plane. The first one corresponds to the stable limit cycle
bifurcating from/into a stable equilibrium state; on the second boundary the stable
limit cycle coalesces with an unstable one and disappears; on the third boundary the
periodic orbit transforms into a homoclinic loop of a simple saddle-node equilibrium
state; the last, fourth boundary corresponds to the stable periodic orbit becoming
a homoclinic orbit to a saddle equilibrium state with negative saddle value.

In the multi-dimensional case, generic one-parameter families have already seven
such stability boundaries known as today. There are two kinds of them conditioned
by whether the periodic orbit exists or not at the critical moment. In the former
case the intersection of the periodic orbit with a local cross-section is the fixed
point of the Poincaré map, so the problem reduces to the analysis of how the
multipliers of the fixed point exit the unit circle. The first possibility is similar to
the two-dimensional case: a single multiplier of the periodic orbit becomes equal
to (+1), this is the saddle-node bifurcation (see Fig.1). Two other codimension-1
bifurcations are the flip or period-doubling one and the birth of a torus. At the
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flip bifurcation there is a single multiplier equal to (−1). The periodic orbit itself
does not disappear after this bifurcation (unlike the saddle-node case) but only
loses stability. In the case where a pair of complex-conjugate multipliers crosses
the unit circle outward the periodic orbit survives too but loses its skin — a stable
two-dimensional invariant torus is born.

(a) (c)(b)

Figure 1. Saddle-node bifurcation: (a) µ < 0, there are two peri-
odic orbits: stable and saddle; (b) µ = 0, the periodic orbits merge
into a saddle-node one. Its strong stable manifold W ss divides
the neighborhood into the node region (below W ss in the figure)
and the saddle region (above W ss). The unstable manifold is the
part of the center manifold which lies in the saddle region. (c)
µ > 0, the saddle-node disappears; the drifting time throughout
its neighborhood is estimated as ∼ 1/

√
µ.

There are three stability boundaries of the second kind, as in the planar case.
They correspond, to the birth of a periodic orbit off a stable equilibrium state (the
Andronov–Hopf bifurcation), and to its flowing into a homoclinic loop of either a
simple saddle-node equilibrium state or a hyperbolic equilibrium state with one-
dimensional unstable manifold and with negative saddle value [3].

It can be shown that the list above gives all the main stability boundaries for
the case where the length of the periodic orbit remains bounded at the bifurcation
moment (although the period may tend to infinity if the orbit adheres to a homo-
clinic loop). One more (and, conjecturally, the last one) main boundary of stability
that has no two-dimensional analogues and corresponds to the unbounded growth
of the length of the periodic orbit was discovered in [4]. This is a codimension-1
bifurcation of smooth flows in at least three-dimensional phase space, such that for
any one-parameter family Xµ of flows which crosses a corresponding bifurcational
surface at, say, µ = 0, for all small µ > 0 (with the appropriate choice of the direc-
tion of increase of the parameter µ) the flow has a stable periodic orbit Lµ which
stays in a bounded region of the phase space and is away from any equilibrium



BLUE SKY CATASTROPHE IN SINGULARLY-PERTURBED SYSTEMS 3

states; besides, it undergoes no bifurcations as µ → +0, whereas both its period
and length increase without bound, and Lµ disappears at µ = 0.

The likelihood of such type of bifurcation (called a “blue sky catastrophe”) was
a long-standing problem. In the construction suggested in [4] (see also [5, 6, 7])
the blue-sky stability boundary is an open subset of a codimension-1 bifurcational
surface corresponding to the existence of a saddle-node periodic orbit. This open
set is distinguished by some qualitative conditions that determine the geometry of
the unstable manifold of the saddle-node (see Fig.2) as well as by a few quantitative
restrictions (the Poincaré map introduced below must be a contraction). If every-
thing is right, the stable periodic orbit Lµ whose period and length both tend to
infinity when approaching the moment of bifurcation is born when the saddle-node
orbit disappears.

Figure 2. The global structure of the set Wu preset for the blue
sky catastrophe. The intersection of Wu with the local cross-
section S in the node region is a countable set of circles accu-
mulating to S ∩ L.

Although the global structure of the unstable set of the saddle-node for the blue
sky catastrophe appears to be rather complex, and hence it may be unclear how
this construction can be achieved plainly in dynamical systems of a natural origin,
nevertheless the answer did not make one wait long. The first explicit example of a
three-dimensional system of ODE’s where the blue sky catastrophe occurs was con-
structed in [8] considering a global homoclinic Guckenheimer-Gavrilov bifurcation
with an extra degeneracy. Another setup for the blue sky bifurcation was proposed
in [7] where it was shown that this particular configuration of the unstable set of the
saddle-node is, in fact, quite typical for the slow-fast (i.e. singularly perturbed) sys-
tems with at least two fast variables. In this paper we present and analyze specific
scenarios which cause indeed the blue sky catastrophe in the singularly perturbed
systems.
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2. Slow-fast systems.

A slow-fast system is a system of the form

(1) ẋ = g(x, y, ε),
εẏ = h(x, y, ε),

where ε > 0 is a small parameter. This system may be regularized by rescaling the
time t = ετ . With the new time τ system (1) becomes

(2)
x′ = εg(x, y, ε),
y′ = h(x, y, ε),

where the prime denotes differentiating with respect to τ . Taking the limit ε = 0,
we obtain

(3)
x′ = 0,
y′ = h(x, y, 0).

The second equation here is called the fast system. For simplicity, we assume that
x ∈ R1. The variable x may be considered as a parameter which governs the motion
of the fast y-variables; we assume y ∈ Rn with n ≥ 2.

A trajectory of system (3) starting off any initial point (x, y) goes typically to
an attractor of the fast system for the given value of x. The attractor may be a
stable equilibrium, or a stable periodic orbit, or be of a less trivial structure — we
would like to skip the discussions concerning the latter possibility for now. When
the equilibrium state or the periodic orbit of the fast system is exponentially stable,
it depends smoothly on x. Thus, we obtain a smooth attracting invariant manifold
of system (3): equilibria of the fast system form curves Meq in the (x, y)-space,
while limit cycles form two-dimensional cylinders Mpo, see Fig.3.

x=const

poMeqM

Figure 3. An orbit of the fast subsystem may tend to a stable
equilibrium, or to a stable limit cycle.

Locally, near every exponentially stable equilibrium point, or a periodic orbit
of the fast subsystem, such a manifold is a center manifold for system (3). Since
the center manifold persists for any close system, it follows that the smooth attrac-
tive invariant manifolds Meq(ε) and Mpo(ε) will exist for all small ε in the whole
system (2) (see [9, 10] for details).

Thus, a trajectory of the system (2) for small ε > 0 behaves in the following way:
in a finite time it comes into a small neighborhood of one of the invariant manifolds
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Meq or Mpo so that its x-component stays nearly constant. Then, it begins drifting
slowly along the chosen invariant manifold with the speed of change of x of order
ε.

As for the original system (1) is concerned, one will observe, in contrast with
the above development, an almost instant jump in the y-components towards the
invariant manifold followed by a finite speed motion in the x-variable. Additionally,
if this is the manifold Mpo, then one observes a fast circular motion in the y-
components, as depicted in Fig.4.

The equilibrium states of the fast system are found from the condition h(x, y, 0) =
0 yielding the algebraic equation for Meq. If y = yeq(x) is a stable branch of Meq,
then the equation of motion of the x-component along it is given, up to the first
order in ε, by

(4) ẋ = g(x, yeq(x), 0).

This is a one-dimensional system which may possess attracting and repelling equi-
librium states corresponding to stable and saddle equilibrium states in the entire
system (1) or (2). The evolution along Meq is either limited to one of the stable
points, or the trajectory hovers about Meq onwards until it reaches a small neigh-
borhood of a critical value of x. Recall that x is treated as a governing parameter
for the fast system, hence its critical values correspond to bifurcations in the fast
system. So, for instance, at such critical x∗ two, stable and unstable, equilibrium
states of the fast subsystem may collide, thereby forming a saddle-node. This will
correspond to a maximum (or a minimum) of x on Meq. The x-component of
the trajectory may no further increase (resp. decrease) along the stable branch of
Meq. Instead, the orbit jumps towards another attractor, which is the ω-limit set
of the outgoing separatrix of the saddle-node equilibrium state in the fast system
at x = x∗, see Fig.5.

l po

(ε)poM

Figure 4. The fast circular motion on the cylinder Mpo(ε) defines
the Poincaré map of the intersection curve lpo(ε).

In order to determine the dynamics of the trajectory near the cylinder Mpo(ε) we
must find firstly the equation y = ypo(τ ; x) of the corresponding fast limit cycle for
the given x; here ypo is a periodic function in τ of period T (x). Then we substitute
y = ypo(tε; x) into the right-hand side of the first equation in (1) and average it
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x=x

Meq Mpo

*

*x>x

Figure 5. Fast jump of the trajectory taking off the fold towards
the attracting cylindrical surface.

over the period T (x). The resulting averaged system

(5) ẋ = φ(x) ≡ 1
T (x)

∫ T (x)

0

g(x, ypo(τ ; x), 0)dτ

gives a first order approximation (see [11]) for the evolution of the x-component of
the orbit near Mpo.

By cutting the cylinder surface by a cross-section transverse to the fast motion
(see Fig.4), one finds a Poincaré map defined on the intersection line lpo(ε):

(6) x̄ = x + εψ(x, ε) = x + εφ(x)T (x) + o(ε).

This one-dimensional map may have stable and unstable fixed points (sited at the
zeros of ψ(x)). These points correspond to stable and saddle periodic orbits of the
system (1). The iterates of any point on lpo either converge to one of the stable
fixed points of the map, or continue to grow monotonically up to the critical value
of x.

A critical value of x corresponds to a bifurcation in the fast system. We will
next consider three types of such bifurcations. The first one (see Fig.6) corresponds
to the case where the stable periodic orbit of the fast system collides with a saddle
periodic orbit thereby forming a saddle-node one which later fades. After passing
such critical value, orbits of the singularly-perturbed system (1) must follow orbits
of the fast subsystem, i.e. they jump toward the ω-limit set of the unstable manifold
of the saddle-node.

The second situation illustrated in Fig.7 corresponds to the case where the stable
periodic orbit of the fast system shrinks to a focus. After passing through the critical
value the phase point keeps on drifting along the corresponding branch of stable
equilibria of the fast system.

The third situation (see Fig.8) corresponds to the case where the stable periodic
orbit of the fast system becomes a homoclinic loop of a saddle equilibrium with
one-dimensional unstable manifold. Thus, at this value of x the stable branch of
Mpo terminates by touching a saddle branch of Meq.

At ε = 0 this branch of Meq is comprised of saddle equilibria of the fast sys-
tem. The union (over an interval of values of x) of their one-dimensional unstable
manifolds gives a two-dimensional invariant manifold Wu(Meq) and the union of
their stable manifolds forms an n-dimensional invariant manifold W s(Meq). The
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manifold Wu(Meq) is exponentially attracting, and the manifold W s(Meq) is ex-
ponentially repelling. Both are normally-hyperbolic invariant manifolds, and they,
hence, persist for all sufficiently small ε [9]. The saddle branch Meq(ε) is the inter-
section of Wu(Meq) and W s(Meq). The manifold Wu(Meq) attracts orbits, so for
every initial point close to Meq, the orbit (may be after some drift along Meq) leaves
a small neighborhood of Meq close to Wu(Meq), i.e. it deserts Meq at some x and
follows one of the separatrices of the corresponding saddle of the fast subsystem.

(ε)(ε) Mpo
L

*

0

x=x*
1

1Meq

2

*

2

0

lpo

x=x

eqM

x=x

W
u

L0

0L

u
W

Figure 6. The fold on Mpo (due to the saddle-node bifurcation in
the fast system at x = x∗0) triggers the fast jump towards the at-
tracting slow motion surface M1

eq corresponding to equilibria of the
fast subsystem. The unstable manifold of the saddle-node periodic
orbit L0 shrinks to a narrow tube after the jump.

(ε)(ε) Mpo
L

*
2

x=x*
1

2

eqM 1

0

0

lpo

x=x

*x=x

eqM
0

W
u

L0

W
u

L

Figure 7. The surface Mpo shrinks into M1
eq through the super-

critical Andronov–Hopf bifurcation in the fast subsystem at x =
x∗0.
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Figure 8. The surface Mpo ends at x = x∗00 which corresponds to
a homoclinic loop in the fast subsystem. The saddle branch M0

eq

terminates at the fold at x = x∗0. All the orbits starting near M0
eq

arrive eventually next to the stable branch M1
eq.

3. Blue sky catastrophe

Let us now suppose that there exists certain numbers x∗0, ..., x
∗
k such that the fol-

lowing holds. Our singularly perturbed system has a number of branches M1
eq, ...,M

k
eq

composed of exponentially stable equilibria of the fast system at ε = 0. Each branch
M j

eq is given by an equation y = yj
eq(x) at ε = 0, where the function yj

eq(x) is de-
fined on a certain interval of values of x, including the interval between x∗j−1 and
x∗j . The drift along the M j

eq is directed from x∗j−1 towards x∗j , i.e.

g(x, yj
eq(x), 0) 6= 0 and sign g(x, yj

eq(x), 0) = sign(x∗j − x∗j−1)

for all x ∈ [x∗j−1, x
∗
j ] (see (4)). At x = x∗j the branch M j

eq ends up; namely, it
collides with a certain saddle one so the fast system has a saddle-node equilibrium
at x = x∗j . The unstable manifold of this saddle-node tends to the exponentially
stable equilibrium of the fast system on the branch M j+1

eq at j < k. When j = k,
the unstable manifold of the saddle-node tends to an exponentially stable periodic
orbit of the fast system. The corresponding stable branch Mpo extends in x until
one of the three following events takes place.
(I) At x = x∗0 the stable branch Mpo meets that of saddle periodic orbits, i.e. the
fast system has a saddle-node periodic orbit. The unstable manifold of this orbit
in the fast system tends, as a whole, to the exponentially stable equilibrium on the
branch M1

eq (Fig.6).
(II) At x = x∗0 the stable periodic orbit of the fast system shrinks to the equilibrium
state lying in the branch M1

eq (Fig.7).
(III) At some x = x∗00 between x∗k and x∗0 the stable periodic orbit of the fast
system adheres to a homoclinic loop of the saddle equilibrium of the fast system.
The corresponding saddle branch M0

eq extends in x until x = x∗0 where it terminates
at the fold representing a saddle-node equilibrium in the fast system; the direction
of the shift in x on M0

eq is from x∗00 towards x∗0. For every x between x∗00 and x∗0
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both the one-dimensional separatrices of the saddle of the fast system tend to the
stable equilibrium on the branch M1

eq (at x = x∗00, when one of the separatrices
forms a homoclinic loop, the other tends to the equilibrium on M1

eq). At x = x∗0 the
whole unstable set of the saddle-node of the fast system tends to the exponentially
stable equilibrium on M1

eq (Fig.8).
In the latter case we need one more assumption. Let λj(x) stand for maximum of

the real part of the characteristic exponents (i.e. for the largest Lyapunov exponent)
of the equilibrium state of the fast system for the fixed value of x on the branch
M j

eq at ε = 0. By construction, all λ1(x), . . . , λk(x) are negative (for equilibria on
the branches M1

eq, . . . , M
k
eq are exponentially stable). Since the single branch M0

eq

corresponds to a saddle equilibrium, it follows that λ0(x) > 0. We assume that
(7)

k∑

j=2

∫ x∗j

x∗j−1

λj(x)
dx

g(x, yj
eq(x), 0)

+

+max
x

(∫ x∗1

x

λ1(x)
dx

g(x, y1
eq(x), 0)

+
∫ x

x∗00

λ0(x)
dx

g(x, y0
eq(x), 0)

)
< 0,

where the maximum is taken over all x ∈ [x∗00, x
∗
0].

Concerning the motion near the manifold Mpo, for all three cases above we
assume also that the function φ(x) that defines, to the first order, the direction
of the drift along Mpo (see (6)) has constant sign (the same as the sign of x∗0 −
x∗k) everywhere except for one point x = x∗∗ where φ vanishes. So, φ(x∗∗) = 0,
φ′(x∗∗) = 0 and we may assume φ′′(x∗∗) 6= 0 (the functions g and h in (1) are
required to be C2 at least ). Let us include our slow-fast system in a one-parameter
family of systems (i.e. we assume that the functions g and h depend on some

parameter µ varying near µ = 0) such that φ(x∗∗) = 0 at µ = 0 and
∂φ

∂µ
(x∗∗) > 0.

It follows that there exists a smooth curve µ = µ∗(ε), µ∗(0) = 0, such that the
function ψ from (6) has exactly two zeros at µ < µ∗(ε) which collide at µ = µ∗(ε),
and at µ > µ∗(ε) the function ψ is non-zero for all x between x∗k and x∗0 (between
x∗k and x∗00 in case III). Zeros of ψ are the fixed points of the Poincaré map on the
attracting invariant manifold Mpo(ε). Thus, if µ < µ∗(ε) our system (2) (or (1) has
two periodic orbits on Mpo(ε): a stable orbit L+ and a saddle orbit L− (Fig.9).

Let U be a small fixed neighborhood U enveloping the branches Mpo and M j
eq,

as well as the orbits of the fast system which connect them. By construction, every
orbit (excluding those in the stable manifold of L−) within U tends to L+ as time
increases. Indeed, any orbit, which begins near Mpo and reaches the threshold
x = x∗0 or x = x∗00, will eventually jump next to the branch M1

eq, then drift along
it before making the next leap to the similar branch M2

eq and so forth until it will
bound finally back to the initial branch Mpo landing in the attraction basin of the
periodic orbit L+.

At µ = µ∗(ε) the orbits L+ and L− unite into a saddle-node periodic orbit
L0. The manifold Mpo(ε) is a center manifold for this orbit; that part of Mpo(ε)
where the orbits run away from L0 as time increase is the unstable manifold of L0.
After approaching the critical value of x where the stable branch Mpo finishes, all
the orbits on the unstable manifold land closely next to the branch M1

eq so that



10 ANDREY SHILNIKOV, LEONID SHILNIKOV, AND DMITRY TURAEV

the manifold Wu
L will focus in a very narrow tube following around and bouncing

amongst the slow motion branches M j
eq, prior its final return to L0 twirling around

Mpo. This gives exactly the configuration of the unstable manifold which was
projected in Fig.2. Therefore, one should anticipate the blue sky catastrophe here,
which is indeed justified by the following theorem.

)

µ

ε

µ

µ=µ (ε)*

(

L
L+

Ws-L -L

Figure 9. At µ < µ∗(ε) the system has two periodic orbits: a
stable orbit L+ and a saddle orbit L−. The orbits which do not
lie in the stable manifold of L− tend to L+ as time increases. At
µ > µ∗(ε) the system has a single and attracting limit cycle Lµ

whose length tends to infinity as µ → µ∗(ε) + 0.

Theorem. In any of the above cases I,II or III, for all sufficiently small ε > 0
and µ > µ∗(ε), in the neighborhood U there exists a unique stable periodic orbit
Lµ which attracts all orbits from U . Both the period and the length of Lµ tend to
infinity as µ → µ∗(ε) + 0.

Proof. By assumption, at ε = 0 and µ = 0 the fast system has a periodic orbit L0

at x = x∗∗. Since L0 is an exponentially stable periodic orbit of the fast subsystem
the absolute value of every of its multipliers is less than 1. In the augmented
slow-fast system (2) this orbit has, besides, an additional multiplier equal to +1
corresponding to the x-variable. Formally speaking, L0 is a non-hyperbolic periodic
orbit of (2) with the center variable x. It is well known that for such orbit there
exist an invariant center manifold and an invariant strong-stable foliation which is
transverse to the center manifold. Moreover, both ones persist for all close values
of parameters. The center manifold coincides with the surface Mpo; so it can be
parameterized by the x-variable and by the angular variable ϕ ∈ S1 (which is
indeed the phase on the periodic orbit in the fast system). The flow is uniformly
exponentially contracting in the directions transverse to Mpo. Let the coordinates
in these contracting dimensions be denoted as z ∈ Rn−1; we can always introduce
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the z-coordinates so that the center manifold becomes locally straightened, i.e. Mpo

near L0 acquires the equation z = 0 for all small ε and µ.
The existence of the strong-stable invariant foliation implies that the variables

(x, ϕ, z) in a small neighborhood of L0 can be introduced in such a way that the
evolution of the (x, ϕ)-variables will become independent of the z-variable for all
small ε and µ (see [12] for details and proofs). Thus, the Poincaré map of an
appropriate cross-section, say, ϕ = 0, is written near L0 as

(8) x̄ = x + εψ(x, ε, µ), z̄ = A(x, z, ε, µ)z,

where ψ is the function from (6), and A is an (n − 1) × (n − 1)-matrix such that
||A|| < 1.

By assumption, when µ > µ∗(ε) the function ψ vanishes nowhere; for definiteness
we may assume ψ > 0 (in other words: x∗0 > x∗k). Hence, by fixing x+ > x∗∗, any
trajectory beginning in a small neighborhood of x = x∗∗ will eventually hit the
cross-section at a point (x, z) within the band Σ+ : x+ ≤ x < x+ +εψ(x+, ε, µ). As
time grows the orbit will further move towards the increase of x, then it will leap
across onto a branch Meq, etc., and as explained above, will finally return into a
small neighborhood of x = x∗∗ on Mpo from the side of x < x∗∗. Hence, given any
x = x− < x∗∗ fixed near x = x∗∗, the orbit will pierce the strip Σ− : x− ≤ x <
x− + εψ(x−, ε, µ) on the cross-section at some uniquely defined point. Thus, the
flow outside the small neighborhood of L0 determine the map: Σ+ 7→ Σ− which we
will denote by T1.

Analogously, the flow near Mpo in the region x− ≤ x < x+ + εψ(x+, ε, µ) defines
the map T0 : Σ− 7→ Σ+ for µ > µ∗(ε). The composition T1 ◦ T0 is a Poincaré map
of Σ−. We will show below that this map is a contraction, and hence has a single
and stable fixed point attracting all other orbits. This fixed point corresponds to
the sought periodic orbit Lµ of our slow-fast system. The number of iterations for
the map (8) to take an orbit from Σ− to Σ+ tends to infinity as µ → µ∗(ε) + 0;
each iterate of the map corresponds to one complete revolution of the trajectory of
the flow around Mpo, i.e. to a non-zero length interval on Lµ. Consequently, the
total length of Lµ increases without a bound as µ → µ∗(ε) + 0. Thus, as soon as
having the contraction of the map T1 ◦ T0 evinced, we have the theorem proved.

Let us first show that the first derivative of the map T0 is uniformly bounded
from above. As we mentioned, the map is contracting in z, so we have solely to
check the boundedness of the derivative of the map in the x-variable (which is
independent of z). Take any x0 ∈ [x−, x−+ εψ(x−, ε, µ)) and let {x1, ..., xm} be its
orbit, i.e. xj+1 = xj + ε + ψ(xj , ε, µ), and xm ∈ [x+, x+ + εψ(x−, ε, µ)). We need

to prove the uniform boundedness of
dxm

dx0
for arbitrarily large m.

Note that
dxj+1

dx0
= (1+ εψ′(xj))

dxj

dx0
(we omit the dependence of ψ on ε and µ).

Following [6], let us introduce ξj = ln
1

ψ(xj)
dxj

dx0
. It is easy to see that

ξj+1 = ξj + ln
(1 + εψ′(xj))ψ(xj)

ψ(xj + εψ(xj))
≤ ξj + ln

1 + εψ′(xj)
1 + εminx∈[xj ,xj+1] ψ

′(x)
.

It follows then that

ξj+1 − ξj ≤ Kε(xj+1 − xj),
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where K is some constant. Hence,

ξm − ξ0 ≤ Kε(xm − x0) ∼ Kε(x+ − x−).

Thus, ξm − ξ0 is uniformly bounded, which means that
ψ(x0)
ψ(xm)

dxm

dx0
is uniformly

bounded too. Since x0 is bounded away from x∗∗, the value of ψ(x0) is also bounded

away from zero, and from here the required uniform boundedness of
dxm

dx0
follows.

Next we will prove that the map T1 for all µ is contracting with the contraction
factor tending to zero as ε → +0. Choose a point M ∈ Σ+ and M̄ = T1M ∈ Σ−.
Since the phase velocity vectors (ẋ, ẏ) at both end points M and M̄ are bounded
away from zero and since the angle between these vectors and the cross-section is
bounded away from zero as well for all small ε, it follows that in order to prove the
strong contraction property for the map T1 it is enough to show that the flow from
M to M̄ contracts strongly two-dimensional areas, for any initial point M ∈ Σ+.
To do so we split the flight from Σ+ to Σ− into a few stages such as the slow drift
along Mpo, then jumps towards and between the branches Meq, the slow passages
along ones, and the final leap back to Mpo together with the drift along it until
reaching Σ−. Let us pick a sufficiently small δ > 0. The interval of time (τ) needed
for a trajectory of the system (2) to fly off the δ-neighborhood of one branch to
the δ-neighborhood of the other branch is finite. Therefore, every such jump brings
only a finite contribution into the contraction or expansion of areas. The number
of such interbranch leaps is finite too, so altogether the jumps may contribute only
a finite factor to the overall expansion/contraction of areas.

The first two Lyapunov exponents of the trajectory of the unperturbed system
(2) at a point x on M j

eq are 0 and λj(x) when ε = 0 (the zero exponent corresponds
to the x-variable, whereas λj is determined via the fast system). Therefore, when
ε is nonzero and small, the time-∆τ shift (∆τ is small enough) set by the flow in
the δ-neighborhood of the point x multiplies the areas by a factor bounded above
by e(λj(x)+O(δ)+O(ε))∆τ . It follows from here that the total coefficient of expansion
or contraction of areas gained during the transport in the δ-neighborhood of the
branch M j

eq from a point x1 to a point x2 is bounded above by

C1 exp

(
1
ε

∫ x2

x1

(λj(x) + C2δ)
dx

g(x, yj
eq(x), 0)

)
,

where C1,2 are some constants independent of x, δ and ε. Recall that λj < 0
for j = 1, ..., k. Thus, if δ > 0 is sufficiently small, it follows that in any of the
cases I,II and III under consideration (in case III, inequality (7) is crucial), during
that phase of motion between Σ+ and Σ− which corresponds to the drift in the
δ-neighborhood of the branches M j

eq and the interbranch jumps, the flow contracts
areas with a factor e−α/ε at least, where α > 0 is a constant independent of δ and
ε.

Now note that the flow in the δ-neighborhood of Mpo but outside a small neigh-
borhood of x = x∗∗ and the δ-neighborhood of the branches Meq cannot produce a
strong expansion of areas. Indeed, the first two Lyapunov exponents for the system
(2) at ε = 0 are both zero on Mpo (as earlier, the first one is due to the x-variable
while the other one corresponds to the circular motion on the stable periodic orbit
of the fast system). In fact, every complete revolution in the δ-neighborhood of
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Mpo but outside the δ-neighborhood of the branches Meq gives the rate of the area
expansion estimated as eO(δ). When ε 6= 0 is sufficiently small this becomes only
slightly worse, i.e. this factor is modified to eO(δ)+O(ε). The number of the turns
that the orbit makes around Mpo while travelling along the path from Σ− towards
Σ+ (i.e. outside of a small neighborhood of x∗∗) is evaluated as O(ε−1) (because
the function ψ is bounded away from zero in this region, see (6)). Hence, the factor
of possible expansion of areas accumulating during that phase of transport from
Σ+ to Σ− which corresponds to the drift near Mpo does not exceed some e(C(1+ δ

ε )).
Thus, when ε is small enough, the areas are indeed strongly contracted during

the flight from Σ+ to Σ−. Hence, the map T1 is a strong contraction, so is the map
T1 ◦ T0 : Σ− → Σ−. End of the proof.

4. Summary

To conclude we remark that the suggested mechanisms of the blue-sky catastro-
phe in slow-fast systems have indeed been reported in models of neuronal activity,
for example, describing the dynamics of the leech heart interneurons, see [13], as
well as [14] where a a similar phenomenon called “ghostbursting” is studied. In both
cases the smooth transition (illustrated in Fig.9) from one type of self-sustained os-
cillations (a round stable periodic orbit L+) to the regime where the attractor is
the “long” stable orbit Lµ can be interpreted as a transition from periodic tonic-
spikes to periodic bursting oscillations. Here, each burst is constituted of the slow
helix-like motion along Mpo generating a large number of spikes, followed by the
inter-burst “calm” phase due to the sluggish drive along Meq.

Note as well that even before the transition to the bursting oscillations the spiking
mode is in excitable state here: a perturbation which drives the initial point outside
the saddle limit cycle L− results in a long calm phase before the sustained spiking
restores.

This work was supported by the grants No. 02-01-00273 and No. 01-01-00975
of RFBR, grant No. 2000-221 INTAS, scientific program “Russian Universities”,
project No. 1905. Leonid Shilnikov acknowledges the support of the Alexander von
Humboldt foundation.
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