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We discuss mathematical problems arising in the classical synchronization theory. The analysis
lets us single out the regions of simple and complex dynamics, and give a full description of bifurca-
tions in synchronization problems. At center of consideration are global bifurcations of saddle-node
periodic orbits on boundaries of synchronization zones.

I. INTRODUCTION. HOMOCLINIC LOOP
UNDER PERIODIC FORCING

These two problems remain fundamental in the classic
theory of synchronization: the first one is on the behavior
of oscillatory systems driven by a periodical force. The
second focuses on the interaction between two coupled
oscillatory systems. Both cases give a plethora of dy-
namical phenomena that exist at different values of con-
trol parameters which can either the amplitude and the
frequency of the external force, or the coupling strength,
respectively.

In terms of the theory of dynamical systems, the prob-
lem in question sounds as follows: find a synchronization
region in the parameter space that corresponds to the ex-
istence of a stable periodic orbit, and describe the ways
synchronization is lost after crossing the its boundaries.

Let an autonomous system

x′ = −λx + f(x, y, µ),
y′ = γy + g(x, y, µ)

have this stable periodic orbit Lµ that becomes a homo-
clinic loop to a saddle equilibrium state as µ → 0+ such
that the saddle value σ = −λ+γ < 0. As well known the
system shall have a single periodic orbit emerging from
the loop for small µ > 0. The period of the new born
cycle is of order | ln µ|. One may wonder what happens
as the system is driven periodically by a small force of
amplitude of order µ? This problem was studied in a
series of papers by Afraimovich and Shilnikov [2–4].

As for the periodically forced system

x′ = λx + f(x, y, µ) + µp(x, y, t, µ),
y′ = γy + g(x, y, µ) + µq(x, y, t, µ), (1)

with p and q are 2π-periodic functions in t, we suppose
that the stable W s and unstable Wu manifolds of the
saddle fixed point do not cross. Hence, the Poincaré map
Tµ is in the form close to the following modelling map:

ȳ = [y + µ(1 + f(θ))]ν

θ̄ = θ + ω − 1
γ ln[y + µ(1 + f(θ))], (2)

where ν = −λ
γ > 1, ω is a constant, and µ(1+f(θ)) is the

Melnikov function with 〈f(θ)〉 = 0. The right-hand side
of the second equation is to be evaluated in modulo 2π
since θ is an angular variable. The last can be interpreted
as the phase difference between the external force and the

response of the system. After rescaling y → µνy the map
assumes the form

ȳ = [1 + f(θ)]ν + ...
θ̄ = θ + ω̃ + F(θ) + ...,

(3)

where F(θ) = − 1
γ ln[1+f(θ)]. One can see the dynamics

is dominated by the second map that de-couples from the
first one.

Assertions [4] 1. In the case where

1
γ

f ′(θ)
1 + f(θ)

< 1, (4)

the map Tµ has an attracting smooth invariant closed
curve of the form y = h(θ, µ) that contains ω-limit set of
any trajectory in Kµ.
2. Let an interval I = [θ1, θ2] exist such that either

f ′(θ) < 0 everywhere on I (5)

and

1
γ

ln
1 + f(θ1)
1 + f(θ2)

> 2π(m + 1), m ≥ 2, (6)

or

1
γ

f ′(θ)
1 + f(θ)

> 2 everywhere on I (7)

and

1
γ

ln
1 + f(θ2)
1 + f(θ1)

> 2(θ2 − θ1) + 2π(m + 1), m ≥ 2. (8)

Then, for all sufficiently small µ > 0 the map Tµ will
have a hyperbolic set Σµ conjugated with the Bernoulli
subshift on m symbols.

The meaning of conditions (5) and (7) is that they
provide expansion in the θ-variable within the region
Π : θ ∈ I and, therefore, hyperbolicity of the map (2)
in the same region (contraction in y is always achieved
for all y sufficiently small since ν > 1). Furthermore, if
the conditions (6) and (8) are fulfilled, then the image
of the region Π overlaps with Π at least m times (see
Fig. 1(a)). Hence, we obtain a construction analogous to
the Smale horseshoe; then the second assertion above be-
comes proven by, say, referring to the lemma on a saddle
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FIG. 1: a) The image of the segment of the region Π overlaps
with Π at least m times. b) The image of the annulus Kµ

under Tµ has no folds.

fixed point in a countable product of Banach spaces [10].

In attempt for a comprehensive investigation of the
synchronization zones we restrict ourself to the case
f(θ) = A sin θ (or f(θ) = Ag(θ), where g(θ) is a function
with preset properties). This choice let us build a quite
reasonable bifurcation diagram (Figs. 2) in the plane of
the parameters (A,− ln µ) in the domain {0 ≤ A < 1,
0 < µ < µ0}, where µ0 is sufficiently small. Each such

FIG. 2: Overlapping resonant zones.

a region can be shown to adjoin to the axis − ln µ0 at
a point with the coordinates (2πk, 0), where k is a large
enough integer. Inside it there co-exist a pair of the fixed
points of the Poincaré map such that θ̄ = θ +2πk. Their
images in the system (1) are the periodic motions of pe-
riod 2πk. The borders of a resonant zone Dk are the
bifurcation curves B1

k and B2
k on which the fixed points

merge into a single saddle-node. Within the region Sk

the closed invariant curve is the unstable manifold Wu

of the saddle fixed point Qk which closes on the stable
point Pk.

After crossing B−
k the invariant curve no longer exists,

see Fig. 3.
Another mechanism of breakdown of the invariant cir-

cle is due to the onset of homoclinic tangencies produced
by the stable and unstable manifolds of the saddle point
Qk. The tangencies occur on the bifurcation curves B1

tk
and B2

tk where each corresponds to a homoclinic contact
to its own component of the set Wu\Qk.

It should be remarked that the synchronization is al-

FIG. 3: After a period-doubling on B−
k , the closure of the

unstable manifold of the saddle-fixed point is no longer home-
omorphic to circle.

ways incomplete in the synchronization zone Sk above
the curves B1

tk and B2
tk. This is due to the likelihood

of the presence of other stable periodic orbits of differ-
ent periods that co-exist along with the orbit Lk cor-
responding to the stable fixed point Pk of the Poincaré
map. However, even if this is not the case and Lk is
the only attractor still, the phase difference between Lk

and other trajectories from the hyperbolic set nearby the
transverse homoclinics to the saddle point Qk will grow
at the asymptotically linear rate, i.e. the phase locking
may be broken at least within the transient process.

We should remark too that chaos itself is less impor-
tant for desynchronization then the presence of homo-
clinics to the saddle point Qk. So, for example, in the
region Dk\Sk beneath the curves B1

tk and B2
tk where Qk

has no homoclinics, the difference in the phase stays al-
ways bounded, which means a relative synchronization,
so to speak. Meanwhile the dynamics can be nonetheless
chaotic: for instance, in the region above the curve B0

tk,
the fixed point Pk is no longer stable but a saddle with a
transverse homoclinic orbit. On the curve B0

tk its stable
and unstable manifolds have a homoclinic tangency of the
third class in terminology introduced in [5] which implies
particularly the complex dynamics persisting below the
curve B0

tk as well.
Thus, the region Dk corresponding to the existence

of the 2πk-periodic orbit, may be decomposed into the
zones of complete, incomplete and relative synchroniza-
tion. The regime of incomplete synchronization, where
there are periodic orbits with different rotation numbers,
always yields the complex dynamics. Further, in the
zone of relative synchronization there is another “non-
rotating” type of chaotic behavior. It can be shown that
such a tableau of the behavior in the resonance zone Dk

is drawn not only for f(θ) = A sin θ, but in generic case
too for an arbitrary function f .

It is shown in [7] that this homoclinic structure gener-
ates the nontrivial hyperbolic set similar to that existing
nearby a transverse homoclinic trajectory to a saddle.
Upon getting into the region Dk the saddle-node disinte-
grates becoming a stable node and a saddle, the latter in-
herits the homoclinic structure, and hence the hyperbolic
set persists. Upon exiting Dk the saddle-node dissolves,
however a great portion of the hyperbolic set survives [7],
i.e. we enter the land of desynchronization (“rotational
chaos”).
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FIG. 4: (a) Homoclinic tangencies involving the unstable
and the strongly stable manifolds of a saddle-node. (b) Pre-
wiggles of the unstable manifold of the saddle-node.

II. DISAPPEARANCE OF THE SADDLE-NODE

In this section we will analyze a few versions of
global saddle-node bifurcations. Let us consider a one-
parameter family of C2-smooth (n + 2)-dimensional dy-
namical systems depending smoothly on µ ∈ µ(−µ0; µ0).
Suppose that the following conditions are hold: (1) at
µ = 0 the system has a periodic orbit L0 of the simple
saddle-node type. This means that all multipliers besides
a single one equal +1, lie in the unit circle, and the first
Lyapunov coefficient is not zero; (2) all the trajectories
in the unstable manifold Wu of L0 tend to L0 as t →∞
and Wu ∩W ss = ∅, i.e. the returning manifold Wu ap-
proaches L0 from the node region; (3) the family under
consideration is transverse to the bifurcational set of sys-
tems with a periodic orbit of the saddle-node type. This
implies that as µ changes the saddle-node bifurcates: it
decouples into a saddle and a node when, say, µ < 0, and
does not exist when µ > 0.

According to [12], one may introduce coordinates in a
small neighborhood of the orbit L0 so that the system
will assume the following form

ẋ = µ + x2[1 + p(x, θ, µ)],
ẏ = [A(µ) + q(x, θ, y, µ)]y,

θ̇ = 1,
(9)

where the eigenvalues of the matrix A lie in the left open
half-plane. Here θ is an angular variable defined modulo
of 1. Here, p is a 1-periodic function in θ, whereas q is
of period 2. In addition, the indicated coordinates are
introduced so that p becomes independent of θ at µ = 0
(the Poincaré map on the center manifold is imbedded
into an autonomous flow;).

The saddle-node periodic orbit L0 is given by equation
(x = 0, y = 0) at µ = 0. Its strongly stable manifold
W ss is given by x = 0. The manifold W ss separates the
saddle region (where x > 0) of L0 from the node one
where x < 0. The manifold y = 0 is invariant, this is a
center manifold. When µ < 0 it contains two periodic
orbits: stable L1 and saddle L2, both coalesce in one L0

at µ = 0. When µ > 0 there are no periodic orbits and
a trajectory leaves a small neighborhood of the phantom
of the saddle-node.

The analysis of the trajectories near Wu presents in-
terest only when µ > 0 (it is trivial when µ ≤ 0). When

µ > 0 the Poincaré map T : S1 → S1 is defined as the
superposition of two maps by the orbits of the system:
T1 : S1 → S0 followed by T0 : S0 → S1:

ȳ = g1(y, θ, ν),
θ̄ = mθ + ν + f(θ) + f1(y, θ, ν), (10)

where the functions f1 and g1 tend to zero as ν → +∞,
so do all their derivatives. Thus, we may see that if the
fractional part of ν is set fixed, then as its integral part
ν tends to infinity, the map T degenerates into the circle
map T̃ :

θ̄ = mθ + f(θ) + ν mod 1. (11)

It becomes evident that the dynamics of the map (10) is
dominated by the properties of the map (11).

FIG. 5: Case m = 0 – the blue sky catastrophe. Cases m =
1 and −1: closure of the unstable manifold of the saddle-
node periodic orbit is a smooth 2D torus and a Klein bottle,
respectively. Case m = 2 – the solid-torus is squeezed, doubly
expanded and twisted, and inserted back into the original and
so on, producing the Wietorius- van Danzig solenoid in the
limit

Let us next outline the following two remarkable cases
m = 0 and |m| ≥ 2 considered in [8, 11, 12, 14].

Theorem [12, 14]. At m = 0 the map T has, for all
sufficiently small µ, a single stable fixed point if |f ′(θ)| <
1 for all θ.

It comes clear from the theorem that as the orbit L0

vanishes the stability goes to a new born, single periodic
orbit whose length and period both tend to infinity as
µ → +0. This bifurcation is called a blue sky catas-
trophe. We may refer the reader to the example of the
system with the explicitly given right hand side with such
catastrophe constructed in [6]. Point out also [8, 9] show-
ing that the blue-sky catastrophe in our setting is typical
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for singularly perturbed systems with at least two fast
variables.

Theorem [11, 14]. Let |m| ≥ 2 and |m+f ′(θ)| > 1 for
all θ. Then the map T will have the hyperbolic Smale-
William attractor for all small µ > 0.

In these conditions the map T acts similarly to the
construction proposed by Smale and Williams. Namely, a
solid torus S0 is mapped into itself in such a way that the
limit Σ = ∩k≥0T

kS0 is a Wietorius- van Danzig solenoid
which is locally homeomorphic to the direct product of a
Cantor set by an interval.

Theorem [1]. If the limit map T̃ is a diffeomorphism,
then for all µ > 0 sufficiently small the map (10) has a
closed stable invariant curve attracting all the trajecto-
ries of the map.

Introduce a quantity δ defined as

δ = sup
θ1<θ2

(θ1 + f(θ1)− θ2 − f(θ2)).

FIG. 6: δ is the absolute value of the difference between cer-
tain minimal value of the right-hand side of the map and the
preceding maximal one.

It becomes evident that δ = 0 if and only if the map
T̃ is a homeomorphism for all ν, i.e. when its graph is
an increasing function. If δ > 0, this map is to have
at least one point of a maximum as well as one point
of a minimum; in essence δ determines the magnitude
between the given minimal value of the right-hand side
of the map and the preceding maximal one.

Borrowing the terminology introduced in [1] we will
refer to the case of δ > 1 as the case of the big lobe.

Theorem [13]. In case of the big lobe the map T has
complex dynamics for all µ > 0 sufficiently small.

Theorem [13]. If δ > 0 in the map (11) and all its
critical points are of a finite order, then the map T has
complex dynamics in the intervals of values of µ which
are located arbitrarily close to µ = 0.

Theorem [13]. If 2δ maxθ f ′′(θ) < 1, then arbitrarily
close to µ = 0 there are intervals of values of µ where the
map T has the trivial dynamics: all trajectories tend to
a continuous invariant curve, homeomorphic to a circle,
with a finite number of fixed points.
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