Math 2215
Multivariable Calculus

Georgia State University

(This paper consists of pages.)

Test III
November 24, 2003
Points: $91+$ is \mathbf{A}
Last name:
First name:

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.

1 (5 points). Find the point(s) at which the twisted cubic

$$
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}
$$

intersects the plane $4 x+2 y+z=24$. Find the angle of intersection.

Math 2215
Multivariable Calculus
2. A surface is represented by the equation $F(x, y, z)=x y+2 x z^{2}+3 y z=56$. Find
a. (10 points) the equation of the plane tangent to this surface at $(2,1,3)$;
b (10 points) Find the directional derivative of $F(x, y, z)$ at the point $(2,1,3)$ in the direction of $\mathbf{v}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$;
c. (5 points) Find $\frac{\partial z}{\partial y}$ on this surface at $(2,1,3)$ by forming a difference quotient.

Math 2215
Multivariable Calculus
3. Find and classify the stationary points of the function $f(x, y)=x^{3}-x y^{3}+3 x y$.

Math 2215
Multivariable Calculus
4 (10 points). Find the most general function, if any!, with the given gradient

$$
\left(2 \ln (3 y)+\frac{1}{x}\right) \mathbf{i}+\left(\frac{2 x}{y}+y^{2}\right) \mathbf{j}
$$

Math 2215
Multivariable Calculus
5 (10 points). Let $z=x^{2}-y^{2}-x y$ and let C be the curve of intersection of the surface with the plane $y=3$. Find the equation for the tangent line to the graph of C at the point $(-3,3,9)$.

Math 2215
Multivariable Calculus

6 (10 points). Let both x and y be changing with time t and at a certain instant you know that $x=1, \quad y=2, \quad x^{\prime}(t)=2, \quad y^{\prime}(t)=-2$. Use the chain rule to find $Q^{\prime}(t)$ at this instant.

Math 2215
Multivariable Calculus
7 (10 points). Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+y^{4}}$ or show that it does not exist.

Math 2215
Multivariable Calculus
8 (15 points). Let $f(x, y)=2 x \sqrt{x+2 y^{2}}$.
Find the gradient vector of $f(x, y) \quad \nabla f(x, y)=$

Find the directional derivative of $f(x, y)$ at $(x, y)=(2,-1)$ in the direction of the vector $\mathbf{a}=-\mathbf{i}+4 \mathbf{j}$

Find a unit vector in the direction in which $f(x, y)$ does not change at $(x, y)=(2,-1)$

Math 2215
Multivariable Calculus
9 (10 points). Determine whether a function $z=f(x, y)$ with the following gradient $\nabla f(z, y)=$ $\left(x^{2}+y\right) \mathbf{i}+\left(y^{3}+x\right) \mathbf{j}$ may exist. If so, find such a function.

Math 2215
Multivariable Calculus
10 (10 points). Let $f(x, y)=2 x^{2}-y^{2}-1$ be C^{1} everywhere. Let $\mathbf{a}(0,0)$ and $\mathbf{b}(1,1)$. Find the point \mathbf{c} on the line segment connecting \mathbf{a} and \mathbf{b} where $f(\mathbf{b})-f(\mathbf{a})=\nabla f(\mathbf{c}) \cdot(\mathbf{b}-\mathbf{a})$.

Math 2215
Multivariable Calculus
11 (10 points). Let $f(x, y)=2 x^{2} / y+\sin \left(\ln (x) e^{x y}\right)$. Find $d y / d x$.

Math 2215
Multivariable Calculus
12 (10 points). Show that the sphere $x^{2}+y^{2}+z^{2}-8 x-8 y-6 z+24$ is tangent to the ellipsoid $x^{2}+3 y^{2}+2 z^{2}=9$ at the point $(2,1,1)$. Find the equations of the tangents planes at this point. What is the equation of the normal line at the point of tangency?

