Georgia State University
 (This paper consists of $\mathbf{1 1}$ pages.)

Final Exam
May 3, 2001

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.
(10 pts) Show that the vectors $\overrightarrow{A B}=(1,1,-1), \overrightarrow{A C}=(2,3,-2)$ and $\overrightarrow{A D}=(4,5,-4)$ are coplanar.
(10 pts) Find the area of the triangle with the vertices $A(3,0,-10), B(4,2,5), C(7,-2,4)$.
(10 pts) Find the distance from the point $C(7,-2,4)$ to the line through the points $A(3,0,-10)$ and $B(4,2,5)$.
(20 pts) Find the equation for each of the following planes:
a) Plane containing the point $(2,-1,3)$ and perpendicular to the line

$$
x=1+3 t, \quad y=4 t, \quad z=2-t
$$

b) Plane containing the points $P(1,1,1), Q(2,1,3)$ and $R(1,-1,2)$.
(25 pts) A surface is represented by the equation $F(x, y, z)=x y+2 x z^{2}+3 y z=56$. Find
a. (10 pts) the equation of the plane tangent to this surface at $(2,1,3)$;
b (10 pts) Find the directional derivative of $F(x, y, z)$ at the point $(2,1,3)$ in the direction of $\mathbf{v}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$;
c. $(5 \mathrm{pts})$ Find $\frac{\partial z}{\partial y}$ on this surface at $(2,1,3)$.
(20 pts) Find and classify the stationary points of the function $f(x, y)=x^{3}-x y^{3}+3 x y$.
(25 pts) Use the method of Lagrange multipliers to find the largest value and the smallest value of $f(x, y, z)=x z+y^{2}$ on the sphere $x^{2}+y^{2}+z^{2}=4$.
(30 pts) Sketch the domain the area of which is given by the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{\sqrt{2-y^{2}}} d x d y
$$

Change the order of integration and find the area.
(30 pts) Find the volume of the $3-\mathrm{D}$ region enclosed by the surfaces $y=x^{2}, y=4, z=5+x, z=2$.
(20 pts) Find the volume of the solid T that is bounded by the paraboloid $z=3\left(x^{2}+y^{2}\right)$ and the plane $z=12$ (Hint: use cylindrical coordinates).

Bonus (20 pts) Evaluate the repeated integral by changing to spherical coordinates

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
$$

