Georgia State University

(This paper consists of pages.)

Test I
September 22, 2003
Points: A $\geq 91+$
Last name:
First name:

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.

1 (15 points). Let $L: V \rightarrow W$ be a linear operator. Prove that $\operatorname{ker}(L)$ is a subspace in W.

2 (15 points). Find the kernel and the range of the following linear transformation $L: P_{3} \rightarrow P_{3}$ $\mathrm{L}(\mathrm{p}(\mathrm{x}))=\mathrm{p}(0) \mathrm{x}-\mathrm{p},(\mathrm{x})(\mathrm{x}-1)$

3 (15 points). ${ }^{* * *}$ Let L be a linear transformation of the vector space into itself. Show by induction that $L^{n+1}(\mathbf{x})=L\left(L^{n}(\mathbf{x})\right)$ is a linear transformation as well.

4 (20 points). ${ }^{* * *}$ Prove the matrix representation theorem: L maps \mathbf{v} into \mathbf{w} iff $A \mathbf{x}=\mathbf{y}$, where $\mathbf{x}=[\mathbf{v}]_{E}$ and $\mathbf{y}=[\mathbf{w}]_{F}$

5 (10 points). Find the standard matrix for the following linear operator: (a) rotation though $\pi / 3$ clockwise followed by reflection around the vertical axis, followed by projection on the x_{1}-axis.

6 (15 points). Let $L(p(x))=p^{\prime}(x)+p(0) x$. Find the matrix representation of L with respect to the ordered bases $E=\left\{1, x, x^{2}\right\}$ and $F=\{-1, x+1\}$. Find the image of $-x^{2}+3 x-2$ in the given bases.

7 (15 points). Let $L: R^{3} \rightarrow R^{3}$ be multiplication given by

$$
\left(\begin{array}{ccc}
1 & 3 & 4 \\
3 & 4 & 7 \\
-2 & 2 & 0
\end{array}\right)
$$

Show that the kernel of L is a line through the origin. Find its equation (parametric or symmetric).

8 (15 points). Let $L: R^{2} \rightarrow R^{3}$ be defined by $L\left(\left(x_{1}, x_{2}\right)^{T}\right)=\left(x_{1}+2 x_{2},-x_{1}, 0\right)^{T}$. Find the matrix representation of L with respect to the bases $E=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $F=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\mathbf{u}_{1}=\binom{1}{3}, \quad \mathbf{u}_{2}=\binom{-2}{4}, \quad \mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)
$$

9 (30 points). Let $L: R^{3} \rightarrow R^{3}$ be defined by

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+2 x_{2}-x_{3} \\
-x_{1} \\
x_{1}+7 x_{3}
\end{array}\right)
$$

(a) Find the matrix representation of L with respect to the standards. (b) Find the matrix representation of L with respect to $F=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)
$$

(c) Find the transition matrix S and its inverse.

10 (10 points). ${ }^{* * *}$ Suppose $A=\Lambda B \Lambda^{-1}$, where Λ is a diagonal matrix with elements $\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. Show that $A \mathbf{s}_{i}=\lambda \mathbf{s}_{i}$, where $i=1, \ldots, n$.

11 (15 points). Show that if A and B are similar, then their multiplicative inverses are similar too.

Math 4435/6635
Linear Algebra

12 (20 points). *** Prove the change of basis theorem.

