Georgia State University

(This paper consists of pages.)

Test II
due October 15, 2003
Points: $\mathbf{A} \geq 91+$
Last name:
First name:

Calculators are not needed or permitted. Write neatly. Place answers in the space provided. The full credit is given only if all intermediate calculations and the entire work are shown.
$\leftrightarrow\rangle$ Problems for 6000 level are marked with asterisks

1 (15 points). $* * * * * *$
(a) Let $\mathbf{v} \neq \mathbf{0}$ in \mathbb{R}^{n}. Show that $\mathbf{v}^{T} \mathbf{y}=\mathbf{v}^{T} \mathbf{x}$ does not necessary imply that $\mathbf{y}=\mathbf{x}$. Draw the figure.
(b) Show that if $\mathbf{u}^{T} \mathbf{x}=\mathbf{u}^{T} \mathbf{y}$ for all unit vectors then $\mathbf{y}=\mathbf{x}$.

Math 4435/6635
Linear Algebra

2 (10 points). $* * * * * * *$
Show that $\mathbf{u} \perp \mathbf{v}$ in \mathbb{R}^{n} iff $\|\mathbf{v}+\mathbf{u}\|=\|\mathbf{v}-\mathbf{u}\|$

Math 4435/6635
Linear Algebra
3 (10 points). Verify the parallelogram law for vectors v and u in \mathbb{R}^{n}

$$
\|\mathbf{v}+\mathbf{u}\|^{2}+\|\mathbf{v}-\mathbf{u}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}
$$

Sketch the figure.

4 (5 points). Find an equation in x, y and z for the plane that passes through the given points $P(3,2,-1), Q(3,-2,4)$ and $Q(1,-1,3)$

5 (5 points). Find the distance between the planes $2 x-4 y+2 z-6=0$ and $-x+2 y-1 z-3=0$

6 (5 points). Let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Show that if \mathbf{x} is orthogonal to each $\mathbf{v}_{i}, 1 \leq i \leq n$, then \mathbf{x} is orthogonal to every vector in W.

7 (10 points). $* * * * * *$
Given $\mathbf{u} \neq 0$ in \mathbb{R}^{n}, let $L=\operatorname{Span}\{\mathbf{u}\}$. Show that the mapping

$$
\mathbf{v} \rightarrow 2 \frac{\mathbf{u}^{T} \mathbf{v}}{\mathbf{u}^{T} \mathbf{u}} \mathbf{v}-\mathbf{v}
$$

is a linear transformation. Draw the figure. Define this transformation.

8 (10 points). Let B be a square matrix with orthonormal (i.g. orthogonal and normalized) columns. Show that B is invertible. Mention all theorems you use.

9 (10 points). Show that the mapping $\mathbf{x} \rightarrow B \mathbf{x}$ with such matrix B above preserves the norm of the vector \mathbf{x}.

Math 4435/6635
Linear Algebra
10 (5 points). Find the point on the line $x+2 y-1=0$ closest to the point $P(2,1)$.

Math 4435/6635
Linear Algebra
11 (10 points). Find $R^{A^{T}}, N(A), R^{A}$ and $N\left(A^{T}\right)$ for

$$
A=\left(\begin{array}{cc}
2 & -2 \\
3 & 4 \\
1 & 0
\end{array}\right)
$$

Math 4435/6635
Linear Algebra
12 (5 points). Find the basis for $S^{\perp} \in \mathbb{R}^{4}$ where S is spanned by $(1,1,0,0)^{T}$ and $(0,0,1,1)$

13 (10 points). ${ }^{* * * * * *}$ Let A be an $m \times n$ matrix with linearly independent columns. Use the normal equation $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ to produce a formula for $\hat{\mathbf{b}}$ - a vector projection of \mathbf{b} onto $R(A)$. Hint: find $\hat{\mathbf{x}}$ first.

Math 4435/6635
Linear Algebra

14 (10 points). ${ }^{* * * * * * *}$ Verify that the error vector $\mathbf{b}-A \hat{\mathbf{x}}$, where $\hat{\mathbf{x}}$, is orthogonal to the column space of the matrix A; here

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
-1 & 2
\end{array}\right) \quad b=\left(\begin{array}{c}
7 \\
0 \\
-7
\end{array}\right)
$$

15 (15 points). $* * * * * *$
Find the equation $y=c_{1} x+c_{2} x^{2}$ of the least square quadratic curve that best fits the given data:

\mathbf{x}	-1	0	1	2
\mathbf{y}	1	0	2	5

Put the points and draw the found curve in (x, y)-plane.
$\star \star \star$ Must!!! Double-check yourself - solve this problem using the calculus approach based on minimization of a function of two variables.

