Georgia <u>State</u> University

(This paper consists of pages.)

Test II	due October 15, 2003	Points: $A \ge 91+$	
Last name: First name:		POINTS	

Calculators are not needed or permitted. Write neatly. Place answers in the space provided. The full credit is given only if all intermediate calculations and the entire work are shown.

 $\diamond \diamond \diamond \diamond$ Problems for 6000 level are marked with asterisks

1 (15 points). *****

(a) Let $\mathbf{v} \neq \mathbf{0}$ in \mathbb{R}^n . Show that $\mathbf{v}^T \mathbf{y} = \mathbf{v}^T \mathbf{x}$ does not necessary imply that $\mathbf{y} = \mathbf{x}$. Draw the figure.

(b) Show that if $\mathbf{u}^T \mathbf{x} = \mathbf{u}^T \mathbf{y}$ for all **unit** vectors then $\mathbf{y} = \mathbf{x}$.

2 (10 points). ****** Show that $\mathbf{u} \perp \mathbf{v}$ in \mathbb{R}^n iff $||\mathbf{v} + \mathbf{u}|| = ||\mathbf{v} - \mathbf{u}||$ **3 (10 points).** Verify the *parallelogram* law for vectors v and u in \mathbb{R}^n

$$||\mathbf{v} + \mathbf{u}||^2 + ||\mathbf{v} - \mathbf{u}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$$

Sketch the figure.

 $\begin{array}{l} \text{Math} \ \underline{4435}/6635 \\ \text{Linear Algebra} \end{array}$

4 (5 points). Find an equation in x, y and z for the plane that passes through the given points P(3, 2, -1), Q(3, -2, 4) and Q(1, -1, 3)

5 (5 points). Find the distance between the planes 2x - 4y + 2z - 6 = 0 and -x + 2y - 1z - 3 = 0

6 (5 points). Let $W = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Show that if \mathbf{x} is orthogonal to each \mathbf{v}_i , $1 \le i \le n$, then \mathbf{x} is orthogonal to every vector in W.

7 (10 points). * * * * * *

Given $\mathbf{u} \neq 0$ in \mathbb{R}^n , let $L = \text{Span}\{\mathbf{u}\}$. Show that the mapping

$$\mathbf{v} \rightarrow 2 \frac{\mathbf{u}^T \mathbf{v}}{\mathbf{u}^T \mathbf{u}} \mathbf{v} - \mathbf{v}$$

is a linear transformation. Draw the figure. Define this transformation.

8 (10 points). Let B be a square matrix with *orthonormal* (i.g. orthogonal and normalized) columns. Show that B is invertible. Mention all theorems you use.

9 (10 points). Show that the mapping $\mathbf{x} \to B\mathbf{x}$ with such matrix *B* above preserves the norm of the vector \mathbf{x} .

10 (5 points). Find the point on the line x + 2y - 1 = 0 closest to the point P(2, 1).

11 (10 points). Find R^{A^T} , N(A), R^A and $N(A^T)$ for

$$A = \left(\begin{array}{rrr} 2 & -2\\ 3 & 4\\ 1 & 0 \end{array}\right)$$

12 (5 points). Find the basis for $S^{\perp} \in \mathbb{R}^4$ where S is spanned by $(1,1,0,0)^T$ and (0,0,1,1)

13 (10 points). ***** Let A be an $m \times n$ matrix with linearly independent columns. Use the normal equation $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ to produce a formula for $\hat{\mathbf{b}}$ — a vector projection of \mathbf{b} onto R(A). Hint: find $\hat{\mathbf{x}}$ first.

14 (10 points). ****** Verify that the error vector $\mathbf{b} - A\hat{\mathbf{x}}$, where $\hat{\mathbf{x}}$, is orthogonal to the column space of the matrix A; here

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 7 \\ 0 \\ -7 \end{pmatrix}$$

15 (15 points). *****

Find the equation $y = c_1 x + c_2 x^2$ of the least square quadratic curve that best fits the given data:

x	-1	0	1	2
У	1	0	2	5

Put the points and draw the found curve in (x, y)-plane.

 $\star \star \star$ Must!!! Double-check yourself — solve this problem using the calculus approach based on minimization of a function of two variables.