$\begin{array}{l} \text{Math} \ \underline{4435}/6635 \\ \text{Linear Algebra} \end{array}$

Georgia <u>State</u> University

(This paper consists of pages.)

Final	December 15, 2003	Points: $A \ge 91+$
Last name: First name:		POINTS

Calculators are not needed or permitted. Write neatly. Place answers in the space provided. Full credit is given only if an entire work including intermediate calculations is shown.

$\diamond \diamond \diamond \diamond$ 6000 level "Must" problems are marked with asterisks

1 (15 points). **** Prove that a matrix $A \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues has n linearly independent vectors.

2 (15 points). ******

Prove that all eigenvalues of an Hermitian matrix are real, and that eigenvectors corresponding to distinct eigenvalues are orthogonal.

3 (20 points). $* * * * * * * * Compute <math>A^{6}$, where

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -2 & 1 & 3 \\ 1 & 1 & 1 \end{array}\right)$$

Show that AX = DX too.

4 (10 points). Show that e^A is nonsingular for any diagonalizable matrix A

5 (10 points). Show that if A is stochastic, then $\lambda = 1$ is its eigenvalue.

6 (15 points). ******

Find a unitary diagonalizing matrix for each of the following:

$$A = \left(\begin{array}{rrr} 1 & 3+i\\ 3-i & 4 \end{array}\right)$$

Is A Hermitian?

 $\begin{array}{l} \text{Math} \ \underline{4435}/6635 \\ \text{Linear Algebra} \end{array}$

7 (15 points). * * * * * * *Let U be a unitary matrix. Prove:

- (a) U is normal;
- (b) $||U\mathbf{x}|| = ||\mathbf{x}||$ for any $\mathbf{x} \in C^n$;
- (c) if λ is an eigenvalue of U, then $|\lambda| = 1$

8 (15 points). Prove that a eigenvectors of a normal matrix $A \in C^{n \times n}$ form an orthonormal basis for C^n