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Calculators are not needed or permitted. Write neatly. Place answers in the space provided. Full
credit is given only if an entire work including intermediate calculations is shown.

44644 6000 level ”Must” problems are marked with asterisks

1 (15 points). s s * * sk
Prove that a matrix A € R™*" with n distinct eigenvalues has n linearly independent vectors.
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2 (15 points). * s % % * %
Prove that all eigenvalues of an Hermitian matrix are real, and that eigenvectors corresponding to
distinct eigenvalues are orthogonal.
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3 (20 points). s s % % %
Compute AS, where

Show that AX = DX too.
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4 (10 points). Show that e is nonsingular for any diagonalizable matrix A
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5 (10 points). Show that if A is stochastic, then A = 1 is its eigenvalue.
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6 (15 points). s s % % % x
Find a unitary diagonalizing matrix for each of the following:

(1 3+
a= (1)

Is A Hermitian?
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7 (15 points). * s % % * %
Let U be a unitary matrix. Prove:

(a) U is normal;
(b) [|Ux]|| = ||x|| for any x € C™;

(c) if X is an eigenvalue of U, then |A| =1
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8 (15 points). Prove that a eigenvectors of a normal matrix A € C"*" form an orthonormal basis
for C™



