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Calculators are not needed or permitted. Write neatly. Place answers in the space provided. Full
credit is given only if an entire work including intermediate calculations is shown.

¨¨¨¨ 6000 level ”Must” problems are marked with asterisks

1 (15 points). ∗ ∗ ∗ ∗ ∗∗
Prove that a matrix A ∈ Rn×n with n distinct eigenvalues has n linearly independent vectors.
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2 (15 points). ∗ ∗ ∗ ∗ ∗ ∗ ∗
Prove that all eigenvalues of an Hermitian matrix are real, and that eigenvectors corresponding to
distinct eigenvalues are orthogonal.
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3 (20 points). ∗ ∗ ∗ ∗ ∗ ∗ ∗
Compute A6, where

A =




1 0 0
−2 1 3
1 1 1




Show that AX = DX too.
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4 (10 points). Show that eA is nonsingular for any diagonalizable matrix A
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5 (10 points). Show that if A is stochastic, then λ = 1 is its eigenvalue.
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6 (15 points). ∗ ∗ ∗ ∗ ∗ ∗ ∗
Find a unitary diagonalizing matrix for each of the following:

A =
(

1 3 + i
3− i 4

)

Is A Hermitian?
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7 (15 points). ∗ ∗ ∗ ∗ ∗ ∗ ∗
Let U be a unitary matrix. Prove:

(a) U is normal;

(b) ||Ux|| = ||x|| for any x ∈ Cn;

(c) if λ is an eigenvalue of U , then |λ| = 1
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8 (15 points). Prove that a eigenvectors of a normal matrix A ∈ Cn×n form an orthonormal basis
for Cn


