Math 2215
Multivariable Calculus

Georgia State University

(This paper consists of pages.)

Test III
April 7, 2003
Points: $91 \&+$ is \mathbf{A}

| Last name: |
| :--- | :--- | :--- |
| First name: |

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.

1 (10 points). Find the domain and the range of the following function

$$
f(x, y, z)=\frac{\sqrt{1-x^{2}}+\sqrt{y^{2}-4}}{1-\sqrt{9-z^{2}}}
$$

Math 2215
Multivariable Calculus

2 (15 points). Identify the given surfaces and sketch them

$$
x-y^{2}-6 z^{2}=0, \quad \frac{x^{2}}{4}-\frac{y^{2}}{9}=1
$$

Math 2215
Multivariable Calculus

3 (15 points). Find $f_{x}(x, y, z)$ and $f_{z}(x, y, z)$ by forming the appropriate difference quotient and taking the limit as $h \rightarrow 0$.

Math 2215
Multivariable Calculus
4 (20 points). Let $z=x^{2}-y^{2}$ and let C be the curve of intersection of the surface with the plane $y=3$. Find the equation for the tangent line to the graph of C at the point $(-3,3,0)$.

Math 2215
Multivariable Calculus
5 (15 points). Show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

does not exist.

Math 2215
Multivariable Calculus
6 (20 points). Determine whether a function $z=f(x, y)$ with the following gradient $\nabla f(z, y)=$ $\left(x^{2}+y\right) \mathbf{i}+\left(y^{3}+x\right) \mathbf{j}$ may exist. If so, find such a function. Hint: the mixed partials test.

Math 2215
Multivariable Calculus
7 (30 points). Find the directional derivative of $f(x, y, z)=x^{2}+y z$ at $(1,-3,2)$ in the direction of the path $\mathbf{r}(t)=t^{2} \mathbf{i}+3 t \mathbf{j}+\left(1-t^{3}\right) \mathbf{k}$. Hint: firstly, find $\mathbf{r}^{\prime}(t)$ at the moment of $t=$? when $\mathbf{r}(t)$ goes through the given point.

Math 2215
Multivariable Calculus

8 (25 points). The radius r of a right circular cylinder decreases at the rate of 2 centimeters per second. At what rate the height h of the cylinder should change in order for its volume not to change at the instant when $r=10$ and $h=5$.

Math 2215
Multivariable Calculus
9 (30 points). Let $f(x, y)=x^{2}+y^{2}-1$ be C^{1} everywhere. Let $\mathbf{a}(0,0)$ and $\mathbf{b}(1,1)$. Find the point \mathbf{c} on the line segment connecting \mathbf{a} and \mathbf{b} where $f(\mathbf{b})-f(\mathbf{a})=\nabla f(\mathbf{c}) \cdot(\mathbf{b}-\mathbf{a})$.

Math 2215
Multivariable Calculus

10 (Bonus 15 points). Let $f(x, y)=2 x y+\sin \left(x e^{y}\right)$. Find $d y / d x$.

Math 2215
Multivariable Calculus
11 (20 points). Show that the sphere $x^{2}+y^{2}+z^{2}-8 x-8 y-6 z+24$ is tangent to the ellipsoid $x^{2}+3 y^{2}+2 z^{2}=9$ at the point $(2,1,1)$. Find the equations of the tangents planes at this point. What is the equation of the normal line at the point of tangency?

