Math 2215
Multivariable Calculus

Georgia State University

(This paper consists of $\mathbf{1 1}$ pages.)

Test III
July 26, 2002
Points: 91+ means A

You have a choice of 8 problems ranked from 10 through 25 points. If your overall score exceeds 91 points your grade will be an "A".

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.

1 (10 points). Show that the following function has no limit at $(0,0)$:

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} .
$$

Math 2215
Multivariable Calculus
2 (10 points). Is there a function $f(x, y)$ with

$$
\frac{\partial f}{\partial x}=\sin (y)-y \quad \text { and } \quad \frac{\partial f}{\partial x}=x \cos (y)-x ?
$$

Math 2215
Multivariable Calculus

3 (20 points). Find the directional derivative of $f(x, y, z)=z \ln \left(\frac{x}{y}\right)$ at $(1,1,2)$ toward the point $(2,2,1)$ [10 points]. Find the unit vector in direction the function descends most rapidly and the direction the function does NOT change in at $(1,1,2)$ [10 points].

Math 2215
Multivariable Calculus

4 (20 points). Find a point \mathbf{c} on the segment connecting $(0,1,1)$ and $(1,3,2)$ at which $f(x, y, z)=$ $4 x z-y^{2}+z^{2}$ satisfies the mean value theorem.

Math 2215
Multivariable Calculus
5 (15 points). Find the rate of change of $f(x, y)=x e^{y}+y e^{-x}$ with respect to t along the path $\mathbf{r}(t)=(\ln t) \mathbf{i}+t(\ln t) \mathbf{j}$ at $t=1$

Math 2215
Multivariable Calculus
6 (20 points). Show that the sphere $x^{2}+y^{2}+z^{2}-8 x-8 y-6 z+24$ is tangent to the ellipsoid $x^{2}+3 y^{2}+2 z^{2}=9$ at the point $(2,1,1)$. Find the equations of the tangents planes at this point. What is the equation of the normal line at the point of tangency?

Math 2215
Multivariable Calculus
7 (20 points). Classify the stationary points of $f(x, y)=x^{4}-2 x^{2}+y^{2}-2$. The second derivative test is rather useful here. Find the absolute max and min values of the function within the disk $x^{2}+y^{2} \leq 25$

Math 2215
Multivariable Calculus

8 (15 points). Find the critical points of $f(x, y)=(4-x-y) x y$ and determine their nature.

Math 2215
Multivariable Calculus

9 (25 points). Find the point of the plane $3 x-4 y+2 z+32$ that is closest to the point $P(-1,2,4)$ and and distance between the points. Estimate also the distance from the point P to the plane. Hint: $\operatorname{dist}(P ;$ plane $)=\frac{\left|A x_{p}+B y_{p}+C z_{p}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$.

Math 2215
Multivariable Calculus

10 (10 points). Find $d y / d x$ of y implicitly defined as a differentiable function of x :

$$
x^{2}-2 x y+y^{4}=4 .
$$

Hint: Apply either the chain rule from Cacl III or implicit differentiation from Calc I, which is the same indeed.

Math 2215
Multivariable Calculus
11 (BONUS $\mathbf{1 0 + 1 5}$ points). The temperature near a heater at the origin is given by

$$
T(x, y)=115 F+e^{-y} \sin (x) .
$$

In what direction should not a heat-avoiding beetle run? Can you find its escaping path from the origin?

