Georgia State University

(This paper consists of $\mathbf{1 0}$ pages.)

Exam I
February 06, 2001
Points: $100-\mathrm{A}$

You have a choice of 12 different problems ranked from 5 through 25 points. If your overall score is, at least, 100 points you will get an "A". The points above 100 go as an extra credit towards the final grade.

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.

1 (10 points). Find the distance between the center of the sphere

$$
x^{2}+y^{2}+z^{2}-2 x-6 z=0
$$

and the line

$$
\frac{x+2}{2}=\frac{y}{1}=\frac{z+3}{2} .
$$

Math 2215
Multivariable Calculus
2 (5 points). Where does the line $\frac{x+2}{2}=\frac{y}{1}=\frac{z+3}{2}$ intersect the plane $x-y+z-1=0$?

Math 2215
Multivariable Calculus
3 (10 points). Draw $\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}, \mathbf{b}-\mathbf{a},-\mathbf{a}-\mathbf{b}, \quad \frac{1}{2}(\mathbf{a}+\mathbf{b})$:

4 (20 points). Given the three points $P(1,0,2), Q(2,2,1)$ and $R(0,1,4)$, let $\triangle P Q R$ denote the triangle having P, Q and R as vertices. Find:
the area of $P Q R$
the angle of $\triangle P Q R$ at the vertex P
the equation of the plane containing the points P, Q and R
equations for the line through the point P which is perpendicular to the plane containing $\triangle P Q R$.

Math 2215
Multivariable Calculus
5 (10 points). Find the volume of the parallelepiped whose edges are $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ with $A(1,2,3), B(1,-1,2), C(3,4,7), D(2,4,0)$.

Math 2215
Multivariable Calculus

6 (25 points). The vertices of the triangle $A B C$ are $A(1,1), B(1,8)$, and $C(4,3)$. Points D and E are located on $A C$ and $B C$, and $\frac{d(C D)}{d(C A)}=\frac{3}{5}, \frac{d(C E)}{d(C B)}=\frac{1}{2}$. Using the cross product find the area of the triangle $D C E$.

A
B

Math 2215
Multivariable Calculus
7 (5 points). Determine whether the vectors are coplanar
$\mathbf{i}, \quad \mathbf{i}-2 \mathbf{j}, \quad 3 \mathbf{j}+\mathbf{k}$.

8 (15 points). Let l_{1} and l_{2} be lines that pass though the origin and have direction vectors

$$
\mathbf{d}_{1}=\mathbf{i}+2 \mathbf{j}+4 \mathbf{k} \quad \text { and } \quad \mathbf{d}_{2}=-\mathbf{i}-\mathbf{j}+3 \mathbf{k} .
$$

Find an equation of the plane that contains l_{1} and l_{2}.

9 (15 points). Find $\mathbf{f}(t)$ from the following information

$$
\mathbf{f}^{\prime}(t)=\mathbf{i}+t^{2} \mathbf{j} \quad \text { and } \quad \mathbf{f}(0)=\mathbf{j}-\mathbf{k}
$$

Math 2215
Multivariable Calculus
10 (15 points). Calculate $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)$ and $\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)$ given that $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}$

11 (20 points). Find the point at which the curves

$$
\begin{aligned}
\mathbf{r}_{1}(t) & =e^{t} \mathbf{i}+2 \sin \left(t+\frac{1}{2} \pi\right) \mathbf{j}+\left(t^{2}-2\right) \mathbf{k} \\
\mathbf{r}_{\mathbf{2}}(t) & =u \mathbf{i}+2 \mathbf{j}+\left(u^{2}-3\right) \mathbf{k}
\end{aligned}
$$

intersect and find the angle.

Math 2215
Multivariable Calculus
12 (5 points). Find an equation in x and y for the curve $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$. Does it have the tangent vector in the origin? If so, what is the unit tangent vector?

