Math 2215
Multivariable Calculus

Georgia State University (This paper consists of $\mathbf{1 2}$ pages.)

Test I
June 28, 2002
Points: $91+$ means A

You have a choice of 14 problems ranked from 5 through 20 points. If your overall score exceeds 91 points your grade will be an "A".

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.

1 (5 points). Find the equation of the sphere satisfying the following conditions: the line segment joining $(0,4,2)$ and $(6,0,2)$.

Math 2215
Multivariable Calculus
2 (5 points). Find the vector of norm 2 in the direction of $\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.

Math 2215
Multivariable Calculus
$\mathbf{3}$ (5 points). Find all vectors $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ that have norm 3 and the \mathbf{i}-component is twice \mathbf{j} component. Picture the vectors.

Math 2215
Multivariable Calculus
4 (5 points). Find the angle between the vectors $\mathbf{a}(2,-3,1)$ and $\mathbf{b}(-3,1,9)$

Math 2215
Multivariable Calculus
5 (5 points). Find all numbers x for which

$$
(x \mathbf{i}+11 \mathbf{j}-3 \mathbf{k}) \quad \perp \quad(2 x \mathbf{i}-x \mathbf{j}-5 \mathbf{k})
$$

Math 2215
Multivariable Calculus
6 (20 points). Given three points $Q(1,0,2), R(2,2,1)$ and $P(0,1,4)$, Find:
the coordinates of the forth vertex S of parallelogram $Q P R S$.
the area of $P Q R S$
the angle of $\triangle Q P R$ at the vertex S
the equation of the plane containing the points S, Q and R
equations for the line through the point Q which is perpendicular to the plane containing $\triangle P Q S$.

Math 2215
Multivariable Calculus
7 (5 points). Let $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}$. Show that $(\mathbf{a} \times \mathbf{b}) \| \mathbf{k}$.

Math 2215
Multivariable Calculus
8 (10 points). Show that the following 4 points: $A(-3,4,7), B(2,-4,0), C(1,2,-1), D(1,1,2)$ are not in the same plane. If so, find the volume of parallelepiped determined by $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$.

Math 2215
Multivariable Calculus

9 (5 points). Find the symmetric equation of the line that passes through the point ($2,-2,1$) and is parallel to the $(y z)$ plane.

10 (15 points). Find the vector parametric equation of the line segment connecting two points $P(6,6,1)$ and $\mathrm{Q}(-3,2,0)$. Find the symmetric equation of the line passing through these points.

11 (10 points). Find the distance from the point $P_{1}(0,0,2)$ to the line $l: \mathbf{r}(t)=2 \mathbf{i}-3 \mathbf{k}$.

12 (10 points). Find the equation of the plane that contains the lines l_{1} and l_{2} that pass through the point $(1,3,-2)$ and have the corresponding direction vectors:

$$
\mathbf{d}_{1}=\mathbf{i}+2 \mathbf{j}+4 \mathbf{k} \quad \text { and } \quad \mathbf{d}_{2}=-\mathbf{i}-\mathbf{j}+3 \mathbf{k} .
$$

Math 2215
Multivariable Calculus
13 (20 points). Find the scalar parametric equation of the line of intersection of two planes $2 x-3 y+z-1=0$ and $-x+y-z=0$.

Math 2215
Multivariable Calculus

14 (10 points). Find the angle at the intersection point of the line $\mathbf{r}(t)=t \mathbf{d}$, where $\mathbf{d}(1,0,1)$ and the plane $x+y-z=0$

