Math 2215
Multivariable Calculus

Georgia State University
 (This paper consists of $\mathbf{1 0}$ pages.)

Exam III
April 5, 2001

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.
(10 pts) Write an equation of the plane tangent to the ellipsoid $2 x^{2}+4 y^{2}+z^{2}=45$ at the point $(2,-3,-1)$

Math 2215
Multivariable Calculus
(10 pts) Write an equation of the plane tangent to the paraboloid $z=5-2 x^{2}-y^{2}$ at the point $(1,1,2)$

Math 2215
Multivariable Calculus
(20 points) Let $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$.
(a) (8 pts) Find and classify the critical points of f.
(b) (12 pts) Find the absolute maximum of f on the elliptical region $x^{2}+2 y^{2} \leq 18$.

Math 2215
Multivariable Calculus
(15 pts) Using the method of Lagrange multipliers find the points of the hyperbola $x y=1$ that are closest to the origin $(0,0)$.

Math 2215
Multivariable Calculus
(15 pts) Find the most general function, if any!, with the given gradient

$$
\left(2 \ln (3 y)+\frac{1}{x}\right) \mathbf{i}+\left(\frac{2 x}{y}+y^{2}\right) \mathbf{j}
$$

Math 2215
Multivariable Calculus
(15 pts) Evaluate

$$
\int_{\Omega} \int\left(6 x+2 y^{2}\right) d x d y
$$

where Ω is the region bounded by the parabola $x=y^{2}$ and the straight line $x+y=2$

Math 2215
Multivariable Calculus
(15 pts) Bonus. Change the order of integration only in

$$
\int_{0}^{1} \int_{x^{2}}^{2 x} f(x, y) d y d x
$$

Hint: sketch the domain in the (x, y)-plane.

