Math 2215
Multivariable Calculus

Georgia State University

(This paper consists of pages.)

Test II
July 11, 2002
Points: $91+$ is \mathbf{A}

You have a choice of 14 problems ranked from 5 through 20 points. If your overall score exceeds 91 points your grade will be an "A".

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.

1 (15 points). Find $\mathbf{f}(t)$ from the following information

$$
\mathbf{f}^{\prime}(t)=t \sin (t) \mathbf{i}+\frac{2}{\sqrt{4-t^{2}}} \mathbf{j}-\frac{1}{t-2} \mathbf{k}, \quad \text { and } \quad \mathbf{f}(0)=\mathbf{j}-\mathbf{k} .
$$

Multiple choice hint: $\cos ^{-1}(u), \sin ^{-1}(u), \tan ^{-1}(u)$ and integration by parts.

Math 2215
Multivariable Calculus
2 (5 points). Find $\lim _{t \rightarrow 0} f(\mathbf{t})$ if it exists

$$
\mathbf{f}(\mathbf{t})=\frac{2 t^{2}+t}{\sin (t)} \mathbf{i}+t^{2}\left(1+\frac{1}{t^{2}}\right) \mathbf{k}
$$

Math 2215
Multivariable Calculus

3 (15 points). Find

$$
\frac{d}{d t}\left[\left(\ln t \mathbf{i}+\frac{t^{2}}{2} \mathbf{j}-\left(t^{2}-1\right) \mathbf{k}\right) \times\left(\frac{1}{t} \mathbf{i}+t \mathbf{j}-\mathbf{k}\right)\right] \quad \text { at } \quad t=1 \text {. }
$$

Math 2215
Multivariable Calculus

4 (10 points). Find the tangent and acceleration vectors and the equation for the tangent line at $t=\pi / 6$:

$$
\mathbf{r}(t)=\cos (2 t) \mathbf{i}-\sin (t) \mathbf{j}+\ln (t) \mathbf{k}
$$

Math 2215
Multivariable Calculus

5 (10 points). Sketch the plane curve and indicate its orientation. Find the unit tangent and unit normal at the indicated point:

$$
\mathbf{r}(t)=e^{-2 t} \mathbf{i}+e^{2 t} \mathbf{j} \quad \text { at } \quad t=0 .
$$

Math 2215
Multivariable Calculus

6 (15 points). Find the length of the arc:

$$
\mathbf{r}(t)=(t \sin t+\cos t) \mathbf{i}+(t \cos t-\sin t) \mathbf{j}+102 \mathbf{k} \quad \text { from } t=0 \text { to } t=2 \pi .
$$

Math 2215
Multivariable Calculus

7 (10 points). Identify and sketch the surface

$$
9 y^{2}-4 y^{z}-36 z^{x}=36
$$

$$
(y-1)^{2}+(z+1)^{2}=4
$$

Math 2215
Multivariable Calculus

8 (10 points). What space curve(s) do the given two surfaces $4 x^{2}+4 y^{2}+(z-2)^{2}=16$ and $x^{2}+y^{2}-z=2$ intersect in?

Math 2215
Multivariable Calculus
9 (10 points). Identify the level curves of $f(x, y)=c$ and sketch them:

$$
f(x, y)=\ln \left(\frac{x}{y^{2}}\right), \quad c=-1,0,1,2
$$

Math 2215
Multivariable Calculus
10 (10 points). Find the equation for the level surface of $f(x, y, z)=x^{2}+y^{2}-4 z$ that contains the given point $P(1,1,0.5)$ and identify and sketch it.

Math 2215
Multivariable Calculus
11 (10 points). Find $f_{x}(x, y)$ and $f_{y}(x, y)$ by forming the appropriate difference quotient and taking the limit as $h \rightarrow 0: f(x, y)=e^{3 x} y^{2}$.

Math 2215
Multivariable Calculus
12 (5 points). Find $f_{x}(0, e)$ and $f_{y}(0, e)$ given that $f(x, y)=\ln (x / y)-y e^{2 x}$.

13 (10 points). Let $f(x, y)$ be differentiable everywhere with

$$
f_{x}(x, y)=y+x^{2}, \quad f_{y}(x, y)=x+e^{y} .
$$

Does such f exist?

Math 2215
Multivariable Calculus
14 (Bonus: 15 points). Let $z=x^{2}+y^{2}$, and C be the line of intersection of the surface with plane $y=3$. Find the equation for the tangent line to C at the point $(1,3,10)$

