Math 2215
Multivariable Calculus

Georgia State University
 (This paper consists of $\mathbf{9}$ pages.)

Exam II
March 1, 2001

Show all of your work. Calculators are not needed or permitted. Write neatly. Place answers in the space provided.
(15 points) An object is moving in three-space according to the parametric equations $x(t)=$ $\sin (t), \quad y(t)=\cos (t), \quad z(t)=\sin (2 t)$. Find
position vector $\quad \mathbf{r}(t)=$
velocity vector $\quad \mathbf{v}(t)=$
acceleration vector $\quad \mathbf{a}(t)=$
speed $\quad v(t)=$
equation for the tangent line at the moment $t=0 \quad \mathbf{R}(u)=$
the unit tangent vector at the moment $t=0 \quad \mathbf{T}(0)=$

Math 2215
Multivariable Calculus
(15 points) Identify the surface and find the traces. Then sketch the surface
$x^{2}+4 z^{2}=4 y$
$4 x^{2}+y^{2}-z^{2}=0$
$4 x^{2}-y^{2}-4 z^{2}=4$

Math 2215
Multivariable Calculus
(15 points) A quantity Q depends upon x and y according to $Q(x, y)=y e^{-x y}$.
Find the second partials of $Q(x, y)$

Let both x and y be changing with time t and at a certain instant you know that $\quad x=1, \quad y=$ $2, \quad x^{\prime}(t)=2, \quad y^{\prime}(t)=-2$.

Use the chain rule to find $Q^{\prime}(t)$ at this instant.
(15 points) Let $f(x, y)=2 x \sqrt{x+2 y}$
Find the gradient vector of $f(x, y) \quad \nabla f(x, y)=$

Find the directional derivative of $f(x, y)$ at $(x, y)=(1,4)$ in the direction of the vector $\mathbf{a}=-\mathbf{i}+4 \mathbf{j}$

Find a unit vector in the direction in which $f(x, y)$ decreases most rapidly at $(x, y)=(1,4)$

Give the rate of change of $f(x, y)$ in that direction at $(x, y)=(1,4)$

Math 2215
Multivariable Calculus
(15 points) Find the length of the given curve

$$
\mathbf{r}(t)=t \mathbf{i}+\left(\frac{1}{4} t^{2}-\frac{1}{2} \ln t\right) \mathbf{j}, \quad t \in[1,5]
$$

Math 2215
Multivariable Calculus
(15 points) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+y^{4}}$ or show that it does not exist.

Math 2215
Multivariable Calculus
(10 points) The temperature at (x, y) is given by $T(x, y)=x^{2}+2 x-y$. Sketch the level curves $T(x, y)=0$ and $T(x, y)=-1$.

Math 2215
Multivariable Calculus
(10 points) The equation

$$
\frac{\partial T}{\partial t}=\delta \frac{\partial^{2} T}{\partial x^{2}}
$$

where $\delta \neq 0$ is some constant, is called the heat or diffusion equation. Verify that the function $T(t, x)=\frac{1}{\sqrt{ } t} e^{-x^{2} /(4 \delta t)}$ satisfies it.

Math 2215
Multivariable Calculus
(15 points) Let $f(x, y)$ be a function with everywhere continuous second partials. Is it possible that

$$
\frac{\partial f}{\partial x}=y+x^{2}, \quad \text { and } \quad \frac{\partial f}{\partial y}=x+e^{y} ?
$$

If it is, can you reconstruct $f(x, y)$?

