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Chapter 1 SUPPLEMENTARY EXERCISES ______________  

The supplementary exercises at the end of each chapter review material from the chapter, 
synthesize concepts from several chapters, or supplement the chapter material in some way.  The 
text has solutions for most of the odd-numbered exercises.  The Study Guide provides solutions 
for selected odd-numbered exercises that have only an answer or a Hint.   

In each chapter, Exercise 1 consists of many true/false questions, whose level of difficulty 
varies.  Some are similar to the ones that appear in many sections of the text, in which a word or 
phrase is sometimes missing or slightly misstated.  Some follow fairly easily from a theorem: 
others may need careful reasoning.  A few may require an argument that uses several ideas.  In 
each case, think carefully about the statement and attempt to write a solution.  The text provides 
the true/false answer, but you must supply the justification or counterexample.  Careful work on 
Exercise 1 will help you prepare for an exam over the chapter mate rial. 
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b .  “Determine if v1, v2, v3 span R3.”  To 

do this, row reduce [v1 v2 v3]: 

  
1 2 1 1 2 1 1 2 1

5 1 1 0 9 4 0 9 4

7 5 3 0 9 4 0 0 0

− − − − − −

− − − − −

− −

     
     
     
          

∼ ∼ .  The matrix does not have a pivot in each row, 

so its columns do not span R3, by Theorem 4 in Section 1.4. 
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 13. The reduced echelon form of A looks like 
1 0 *
0 1 *
0 0 0

E
 
 =  
  

.  Since E is row equivalent to A, 

the equation Ex = 0 has the same solutions as Ax = 0.  Thus 
1 0 * 3 0
0 1 * 2 0
0 0 0 1 0

     
     − =     
          

.  By 

inspection, 
1 0 3
0 1 2
0 0 0

E

− 
 =  
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 17. Here are two arguments.  The first is a “direct” proof.  The second is called a “proof by 
contradiction.” 

i. Since {v1, v2, v3} is a linearly independent set, v1 ≠ 0.  Also, Theorem 7 shows that v2 
cannot be a multiple of v1, and v3 cannot be a linear combination of v1 and v2.  By 
hypothesis, v4 is not a linear combination of v1, v2, and v3.  Thus, by Theorem 7, 
{v1, v2, v3, v4} cannot be a linearly dependent set and so must be linearly independent. 

ii.  Since {v1, v2, v3} is a linearly independent set, v1 ≠ 0.  Suppose that {v1, v2, v3, v4} is 
linearly dependent.  Then, by Theorem 7, one of the vectors in the set is a linear 
combination of the preceding vectors.  This vector cannot be v4 because v4 is not in 
Span{v1, v2, v3}.  Also, none of the vectors in {v1, v2, v3} is a linear combina tions of 
the preceding vectors, by Theorem 7. So the linear dependence of {v1, v2, v3, v4} is 
impossible, and {v1, v2, v3, v4} is linearly independent. 

Chapter 1 GLOSSARY CHECKLIST ___________________  

Check your knowledge by attempting to write definitions of the terms below.  Then compare your 
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if 
any, might appear on a test. 

affine transformation: A mapping T: Rn →Rm of the form T(x) = . . . . 

augmented matrix: A matrix made up of a . . . . 

back-substitution (with matrix notation): The . . . phase of row reduction of an . . . . 

basic variable: A variable in a linear system that . . . . 

codomain (of T: Rn→Rm): The set . . . that contains . . . . 

coefficient matrix: A matrix whose entries are . . . . 
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consistent linear system: A linear system with . . . . 

contraction: A mapping x |→  . . . . 

difference equation (or linear recurrence relation): An equation of the form . . . whose 
solution is . . . .  

dilation: A mapping x |→  . . . . 

domain (of a transformation T): The set of . . . . 

echelon form (or row echelon form, of a matrix): An echelon matrix that . . . . 

echelon matrix (or row echelon matrix): A rectangular matrix that has three properties: 
(1) . . . (2) . . . (3) . . .  .  

elementary row operations: (1) . . . (2) . . . (3) . . . 

equal vectors: Vectors in Rn whose . . . . 

equivalent (linear) systems: Linear systems with the . . . . 

existence question: Asks, “Does . . . exist?” or “Is . . .?” Also, “Does . . . exist for . . .?” 

floating point arithmetic: Arithmetic with numbers represented as . . . . 

flop: One arithmetic operation . . . . 

free variable: Any variable in a linear system that . . . . 

Gaussian elimination: See row reduction algorithm. 

general solution (of a linear system): A . . . description of a solution set that expresses . . . . 

homogenous equation: An equation of the . . . . 

identity matrix (denoted by I or In): A square matrix . . . . 

image (of a vector x under a transformation T): The vector . . . . (Use symbols) 

inconsistent linear system: A linear system with . . . . 

leading entry: The . . . entry in a row of a matrix. 

linear combination: A sum of . . . . 

linear dependence relation: A . . . equation where . . . . 

linear equation (in the variables x1, . . . ., xn): An equation that can be written in the form . . . . 

linearly dependent (vectors): An indexed set {v1, . . ., vp} with the property that . . . . 

linearly independent (vectors): An indexed set {v1, . . ., vp} with the property . . . . 

linear system: A collection of one or more . . . . equations involving . . . . 

linear transformation: A transformation T: Rn→ Rm is linear if (i) . . . , and (ii) . . . . 

line through p parallel to v: The set . . . . (Use symbols) 
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matrix: A rectangular . . . . 

matrix equation: An  equation that . . . . 

matrix transformation: A mapping x |→  . . . . 

migration matrix: A matrix that gives the . . . movement between different locations, from . . . . 

m ××  n matrix: A matrix with . . . . 

nontrivial solution: A nonzero solution of . . . . 

one-to-one (mapping): A mapping T: Rn→ Rm such that . . . . 

onto (mapping): A mapping T: Rn→ Rm such that. . . . 

overdetermined system: A system of equations with . . . . 

parallelogram rule for addition: A geometric interpretation of . . . . 

parametric equation of a line: An equation of the form . . . . 

parametric equation of a plane: An equation of the form . . . . 

pivot: A . . . number that either is used . . . or is . . . . 

pivot column: A column that . . . . 

pivot position: A position in a matrix A that corresponds . . . . 

plane through u, v, and the origin: A set whose parametric equation is . . . . 

product Ax: . . . . 

range (of a linear transformation T): The set of . . . . 

reduced echelon form (or reduced row echelon form,) of a matrix: A rectangular matrix in 
echelon format that has these additional properties . . . . 

roundoff error: Error in floating point arithmetic caused when . . . .  

row-column rule for computing Ax: . . . . 

row equivalent (matrices): Two matrices for which there exists . . . . 

row reduction algorithm: A systematic method using . . . . 

row replacement: An elementary row operation that . . . . 

scalar: . . . . 

scalar multiple of u by c: The vector . . . . 

set spanned by {v1, . . . . , vp}: . . . .
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size (of a matrix): Two numbers . . . . 

solution (of a linear system): . . . . 

solution set: The set of . . . . 

span {v1, . . . ., vp}: The set . . . . 

standard matrix (for a linear transformation T): The matrix . . . . 

system of linear equations (or a linear system): A collection of  . . . . 

transformation (or function or mapping) T from Rn to Rm: A rule that assigns to each vector x 
in Rn a . . . . Notation: T: Rn→ Rm. 

translation (by a vector p): The operation of . . . . 

trivial solution: The solution . . . of a . . . . 

underdetermined system: A system of equations with . . . . 

uniqueness question: Asks, “If a solution of a system . . . ?” 

vector: . . . . 

vector equation: An equation involving . . . . 

weights: . . . . 
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