Section 4.9 Applications to Markov Chains

Rent-a-Lemon has three locations from which to rent a car for one day: Airport, downtown and the valley

Daily Migration:

		Rented From		
		Valley	Downtown	Airport
Returned To	Airport	.05	.02	.95
Neturned 10	Downtown	.05	.90	.03
	Valley	.90	.08	.02

Airport

Downtown

Valley

$$M = \begin{bmatrix} .95 & .02 & .05 \\ .03 & .90 & .05 \\ .02 & .08 & .90 \end{bmatrix}$$
(migration matrix)

	.5	(initial fraction of cars at airport)
$\mathbf{X}_0 =$.3	(initial fraction of cars downtown)
	.2	(initial fraction of cars at valley location)

(initial distribution vector which is a probability vector)

Interpretation of Mx_0

$$M\mathbf{x}_{0} = \begin{bmatrix} .95 & .02 & .05 \\ .03 & .90 & .05 \\ .02 & .08 & .90 \end{bmatrix} \begin{bmatrix} .5 \\ .3 \\ .2 \end{bmatrix} =$$

$$.5\begin{bmatrix} .95 \\ .03 \\ .02 \end{bmatrix} + .3\begin{bmatrix} .02 \\ .90 \\ .08 \end{bmatrix} + .2\begin{bmatrix} .05 \\ .90 \\ .90 \end{bmatrix}$$

$$\frac{1}{1} \qquad \uparrow \qquad \uparrow$$
Redistribution of airport cars cars
$$Redistribution after one day = \mathbf{x}_{1} = M\mathbf{x}_{0} = \begin{bmatrix} .95 & .02 & .05 \\ .03 & .90 & .05 \\ .02 & .08 & .90 \end{bmatrix} \begin{bmatrix} .5 \\ .3 \\ .90 \end{bmatrix} = \begin{bmatrix} 0.491 \\ 0.295 \\ 0.214 \end{bmatrix}$$

$$\mathbf{x}_{k+1} = M\mathbf{x}_{k} \text{ for } k = 0, 1, 2, \dots$$
(Markov Chain)
$$Distribution after two days = \mathbf{x}_{2} = M\mathbf{x}_{1} = \begin{bmatrix} .95 & .02 & .05 \\ .03 & .90 & .05 \\ .02 & .08 & .90 \end{bmatrix} \begin{bmatrix} 0.491 \\ 0.295 \\ 0.214 \end{bmatrix} = \begin{bmatrix} 0.483 \\ 0.290 \\ 0.226 \end{bmatrix}$$

$$\mathbf{x}_{3} = M\mathbf{x}_{2} = \begin{bmatrix} .95 & .02 & .05 \\ .03 & .90 & .05 \\ .02 & .08 & .90 \end{bmatrix} \begin{bmatrix} 0.491 \\ 0.295 \\ 0.214 \end{bmatrix} = \begin{bmatrix} 0.483 \\ 0.290 \\ 0.226 \end{bmatrix}$$

$$\mathbf{x}_{4} = M\mathbf{x}_{3} = \begin{bmatrix} .95 & .02 & .05 \\ .03 & .90 & .05 \\ .02 & .08 & .90 \end{bmatrix} \begin{bmatrix} 0.475 \\ 0.287 \\ 0.236 \end{bmatrix}$$

÷

$$\mathbf{x}_{49} = M\mathbf{x}_{48} = \begin{bmatrix} 0.417 \\ 0.278 \\ 0.305 \end{bmatrix}$$
$$\mathbf{x}_{50} = M\mathbf{x}_{49} = \begin{bmatrix} 0.417 \\ 0.278 \\ 0.305 \end{bmatrix}$$
 (long term distribution)
:
$$\mathbf{x} = \begin{bmatrix} 0.417 \\ 0.278 \\ 0.305 \end{bmatrix}$$
 is called a **steady state vector** since $\mathbf{x} = M\mathbf{x}$

Finding the Steady State Vector

$$M\mathbf{x} = \mathbf{x}$$
$$M\mathbf{x} = I\mathbf{x}$$
$$M\mathbf{x} - I\mathbf{x} = \mathbf{0}$$
$$(M-I)\mathbf{x} = \mathbf{0}$$

Solve $(M-I)\mathbf{x} = \mathbf{0}$ to find the steady state vector. Note that the solution \mathbf{x} must be a *probability* vector.

EXAMPLE: Suppose that 3% of the population of the U.S. lives in the State of Washington. Suppose the migration of the population into and out of Washington State will be constant for many years according to the following migration probabilities. What percentage of the total U.S. population will eventually live in Washington?

Fre	om :	
WA	Rest of U.S.	To:
.9	.01	WA
.1	.99	Rest of U.S

Solution

$$M = \begin{bmatrix} .9 & .01 \\ .1 & .99 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} \% \text{ of people in WA} \\ \% \text{ in rest of U.S.} \end{bmatrix}$$
$$M - I = \begin{bmatrix} .9 & .01 \\ .1 & .99 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -0.1 & 0.01 \\ 0.1 & -0.01 \end{bmatrix}$$

Solve $(M-I)\mathbf{x} = \mathbf{0}$

$$\begin{bmatrix} -0.1 & 0.01 & 0\\ 0.1 & -0.01 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -0.1 & 0\\ 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0.1x_2\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0.1\\ 1 \end{bmatrix}$$
One solution: $\mathbf{x} = \begin{bmatrix} 1\\ 10 \end{bmatrix}$

Solution we want has entries which add up to one:

$$\mathbf{X} = \begin{bmatrix} 1/11\\ 10/11 \end{bmatrix} \approx \begin{bmatrix} 0.091\\ 0.909 \end{bmatrix}$$